Effect of Helminthosporic Root Rot on the Lipid Content in Wheat Seedlings

Effect of Helminthosporic Root Rot on the Lipid Content in Wheat Seedlings The concentration of dry matter and the content of esterified fatty acids in total lipids of roots and etiolated shoots of 3- to 10-day-old seedlings of wheat (Triticum aestivum L.) infected with Bipolaris sorokiniana (Sacc.) Schoemaker, the agent of helminthosporic root rot, were determined in the course of germination. At the onset of germination, fungal infection caused a considerable increase in the dry matter concentration in both roots and shoots due to the enhanced mobilization of seed reserves. However, after the 7th day of germination, dry matter concentration fell below the level of noninfected control seedlings as a result of infection. The content of total lipids rose immediately after infection and always exceeded the control index up to the end of germination, in spite of a continuous decrease in this index in both control and infected seedling. It is concluded that an increase in the content of cellular lipids is a characteristic response of both shoots and roots to the root rot infection of wheat seedlings. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Effect of Helminthosporic Root Rot on the Lipid Content in Wheat Seedlings

Loading next page...
 
/lp/springer_journal/effect-of-helminthosporic-root-rot-on-the-lipid-content-in-wheat-usCvz7avPd
Publisher
Kluwer Academic Publishers-Plenum Publishers
Copyright
Copyright © 2001 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1023/A:1009067102369
Publisher site
See Article on Publisher Site

Abstract

The concentration of dry matter and the content of esterified fatty acids in total lipids of roots and etiolated shoots of 3- to 10-day-old seedlings of wheat (Triticum aestivum L.) infected with Bipolaris sorokiniana (Sacc.) Schoemaker, the agent of helminthosporic root rot, were determined in the course of germination. At the onset of germination, fungal infection caused a considerable increase in the dry matter concentration in both roots and shoots due to the enhanced mobilization of seed reserves. However, after the 7th day of germination, dry matter concentration fell below the level of noninfected control seedlings as a result of infection. The content of total lipids rose immediately after infection and always exceeded the control index up to the end of germination, in spite of a continuous decrease in this index in both control and infected seedling. It is concluded that an increase in the content of cellular lipids is a characteristic response of both shoots and roots to the root rot infection of wheat seedlings.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Oct 10, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off