Effect of heat treatment on ultrasonic synthesized bismuth ferrites: an effective visible light-driven photocatalyst

Effect of heat treatment on ultrasonic synthesized bismuth ferrites: an effective visible... Even though it is a potential visible-light responsive photocatalyst, the application of BiFeO3 (BFO) is restricted because of the presence of residual impurities in the synthesis process. To alleviate this problem, in this work, BiFeO3 was synthesized by the sonochemical method and calcined at different temperatures. Morphologies and phases of the samples were evaluated by using powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) techniques. UV–Vis diffuse reflectance spectroscopy (UV–Vis DRS) was used to analyze the absorption properties. The photocatalytic activities of the samples were evaluated via the photocatalytic degradation of rhodamine-B (RhB) aqueous solution under simulated solar light irradiation. The results revealed that the phase transformation from amorphous to crystalline phase has occurred during heat treatment. The formation of pure BFO occurred only at about 600 °C, indicating the importance of heat treatment during the synthesis process. On the other hand, the decolorization of RhB solution was completed by pure BFO photocatalyst within 1 h of simulated solar light irradiation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Effect of heat treatment on ultrasonic synthesized bismuth ferrites: an effective visible light-driven photocatalyst

Loading next page...
 
/lp/springer_journal/effect-of-heat-treatment-on-ultrasonic-synthesized-bismuth-ferrites-an-vK5ew8h3NS
Publisher
Springer Netherlands
Copyright
Copyright © 2017 by Springer Science+Business Media B.V.
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-017-3047-8
Publisher site
See Article on Publisher Site

Abstract

Even though it is a potential visible-light responsive photocatalyst, the application of BiFeO3 (BFO) is restricted because of the presence of residual impurities in the synthesis process. To alleviate this problem, in this work, BiFeO3 was synthesized by the sonochemical method and calcined at different temperatures. Morphologies and phases of the samples were evaluated by using powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) techniques. UV–Vis diffuse reflectance spectroscopy (UV–Vis DRS) was used to analyze the absorption properties. The photocatalytic activities of the samples were evaluated via the photocatalytic degradation of rhodamine-B (RhB) aqueous solution under simulated solar light irradiation. The results revealed that the phase transformation from amorphous to crystalline phase has occurred during heat treatment. The formation of pure BFO occurred only at about 600 °C, indicating the importance of heat treatment during the synthesis process. On the other hand, the decolorization of RhB solution was completed by pure BFO photocatalyst within 1 h of simulated solar light irradiation.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Jul 17, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off