Effect of Fluidizing Agents on Paclitaxel Penetration in Cervical Cancerous Monolayer Membranes

Effect of Fluidizing Agents on Paclitaxel Penetration in Cervical Cancerous Monolayer Membranes The aim of this study was to compare modulation of paclitaxel penetration in cancerous and normal cervical monolayers by four fluidizing agents: PCPG (9:1 DPPC:PG), PCPE (9:1 DPPC:DOPE), ALEC (7:3 DPPC:PG) and Exosurf (13.5:1.5:1.0 DPPC:hexadecanol:tyloxapol). Presence of the fluidizing agents improved drug penetration significantly. PCPG and PCPE were promising penetration enhancers. PCPG 0.1% caused 3.8– and 1.7-fold higher maximum increments in surface pressure due to drug penetration, (Δπ)max, than the control in cancerous and normal monolayers, respectively, at 20 mN/m. In cancerous monolayer at 20 mN/m, presence of 0.1%, 0.5%, 1%, 5% and 10% PCPE produced 3.4-, 5.7-, 7.4-, 9.6- and 9.8-fold higher drug penetration compared to the control monolayer without PCPE, respectively. In cancerous monolayer at 20 mN/m, PCPG and PCPE liposomes having 1 mg lipid gave 2.1 and 3.6 times higher (Δπ)max compared to the control, respectively. Further, the liposomal drug penetration was found to be directly proportional to the liposomal lipid content. The effect of the fluidizing agents was confirmed by increased calcein release from model cervical cancer liposomes. These results may have implications in using the above biocompatible lipids and surfactants as penetration enhancers along with anticancer drugs or as carriers for liposomal formulations of anticancer drugs for improved membrane penetration. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Effect of Fluidizing Agents on Paclitaxel Penetration in Cervical Cancerous Monolayer Membranes

Loading next page...
 
/lp/springer_journal/effect-of-fluidizing-agents-on-paclitaxel-penetration-in-cervical-5kXQ7lnbXM
Publisher
Springer-Verlag
Copyright
Copyright © 2007 by Springer Science+Business Media, LLC
Subject
Life Sciences; Human Physiology ; Biochemistry, general
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-007-9064-6
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial