Effect of ferrocene catalyst particle size on structural and morphological characteristics of carbon nanotubes grown by microwave oven

Effect of ferrocene catalyst particle size on structural and morphological characteristics of... The influence of catalyst particle size on the formation and diameter of carbon nanotubes (CNTs) is investigated. Ferrocene catalyst with an average diameter of 19.7, 21.4, 23.6 and 27.0 µm is used for the growth of CNTs by a cost-effective and facile method using microwave oven. Morphological observations by transmission electron microscopy and field emission scanning electron microscopy reveal consistently that smaller catalyst diameter generates CNTs with smaller diameter. Raman spectroscopy indicates that the full width at half maximum of G-, D- and 2D-bands decreases gradually with increasing CNTs diameter; meanwhile, G-band/D-band intensity ratio is found to be sensitive to crystal defects, showing a drop for CNTs diameter in the range 25–40 nm then followed by a slight increase for higher diameters. This may be associated with CNTs curvature and strain which developed along tube walls. X-ray diffraction analysis demonstrates an increase in d (002) interlayer spacing with decreasing CNTs diameter. Furthermore, CNTs diameter is found to be inversely proportional to (002) linewidth. Finally, the energy band gap estimated from UV–NIR–Vis measurements increases slightly with CNTs diameter, 5.69–5.84 eV. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Materials Science Springer Journals

Effect of ferrocene catalyst particle size on structural and morphological characteristics of carbon nanotubes grown by microwave oven

Loading next page...
 
/lp/springer_journal/effect-of-ferrocene-catalyst-particle-size-on-structural-and-FW0RaHmmEy
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Materials Science; Materials Science, general; Characterization and Evaluation of Materials; Polymer Sciences; Continuum Mechanics and Mechanics of Materials; Crystallography and Scattering Methods; Classical Mechanics
ISSN
0022-2461
eISSN
1573-4803
D.O.I.
10.1007/s10853-017-1381-2
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial