Effect of Ferriprotoporphyrin IX and Non-heme Iron on the Ca2+ Pump of Intact Human Red Cells

Effect of Ferriprotoporphyrin IX and Non-heme Iron on the Ca2+ Pump of Intact Human Red Cells Previous studies have shown that ferriprotoporphyrin IX (FP) and non-heme iron have a marked inhibitory effect on the Ca2+-Mg2+-ATPase activity of isolated red cell membranes, the biochemical counterpart of the plasma membrane Ca2+ pump (PMCA). High levels of membrane-bound FP and non-heme iron have been found in abnormal red cells such as sickle cells and malaria-infected red cells, associated with a reduced life span. It was important to establish whether sublytic concentrations of FP and non-heme iron would also inhibit the PMCA in normal red cells, to assess the possible role of these agents in the altered Ca2+ homeostasis of abnormal cells. Active Ca2+ extrusion by the plasma membrane Ca2+ pump was measured in intact red cells that had been briefly preloaded with Ca2+ by means of the ionophore A23187. The FP and nonheme iron concentrations used in this study were within the range of those applied to the isolated red cell membrane preparations. The results showed that FP caused a marginal inhibition (∼20%) of pump-mediated Ca2+ extrusion and that non-heme iron induced a slight stimulation of the Ca2+ efflux (11–20%), in contrast to the marked inhibitory effects on the Ca2+-Mg2+-ATPase of isolated membranes. Thus, FP and non-heme iron are unlikely to play a significant role in the altered Ca2+ homeostasis of abnormal red cells. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Effect of Ferriprotoporphyrin IX and Non-heme Iron on the Ca2+ Pump of Intact Human Red Cells

Loading next page...
 
/lp/springer_journal/effect-of-ferriprotoporphyrin-ix-and-non-heme-iron-on-the-ca2-pump-of-NOh9K008p1
Publisher
Springer-Verlag
Copyright
Copyright © 2000 by Springer-Verlag New York Inc.
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s002320001059
Publisher site
See Article on Publisher Site

Abstract

Previous studies have shown that ferriprotoporphyrin IX (FP) and non-heme iron have a marked inhibitory effect on the Ca2+-Mg2+-ATPase activity of isolated red cell membranes, the biochemical counterpart of the plasma membrane Ca2+ pump (PMCA). High levels of membrane-bound FP and non-heme iron have been found in abnormal red cells such as sickle cells and malaria-infected red cells, associated with a reduced life span. It was important to establish whether sublytic concentrations of FP and non-heme iron would also inhibit the PMCA in normal red cells, to assess the possible role of these agents in the altered Ca2+ homeostasis of abnormal cells. Active Ca2+ extrusion by the plasma membrane Ca2+ pump was measured in intact red cells that had been briefly preloaded with Ca2+ by means of the ionophore A23187. The FP and nonheme iron concentrations used in this study were within the range of those applied to the isolated red cell membrane preparations. The results showed that FP caused a marginal inhibition (∼20%) of pump-mediated Ca2+ extrusion and that non-heme iron induced a slight stimulation of the Ca2+ efflux (11–20%), in contrast to the marked inhibitory effects on the Ca2+-Mg2+-ATPase of isolated membranes. Thus, FP and non-heme iron are unlikely to play a significant role in the altered Ca2+ homeostasis of abnormal red cells.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Jan 31, 2014

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off