Effect of Fe-zeolite on formation of N2O in selective reduction of NO by NH3 over V2O5–WO3/TiO2 catalyst

Effect of Fe-zeolite on formation of N2O in selective reduction of NO by NH3 over V2O5–WO3/TiO2... An approach for significantly suppressing N2O formation in reduction of NO by NH3 over V2O5–WO3/TiO2 (VWT) catalyst has been studied by coating different amounts of a Fe-exchanged zeolite (FeZ) onto the catalyst. FeZ-promoted VWT samples were characterized using N2 sorption, X-ray diffraction (XRD) analysis, and NH3 adsorption/desorption techniques to understand the primary role of FeZ in lowering N2O production levels. At high temperatures (≥450 °C), VWT gave N2O production with high concentrations, while N2O formation was noticeably reduced when using FeZ-promoted catalysts, which also showed somewhat lower NO removal activities (<5 %) at all temperatures. N2 sorption and XRD measurements revealed no perceptible physical or chemical alterations of each constituent, even in VWT catalysts after FeZ coating following high-temperature calcination. Adsorption of NH3 on unpromoted and FeZ-promoted catalysts and subsequent desorption yielded very complicated spectra for N2O that might primarily come from NH3 oxidation, and the interaction between V–NO species at temperatures >580 °C. NO on neighboring sites seems to be produced via decomposition of N2O generated at lower temperatures. The FeZ in the promoted VWT catalysts could be responsible for N2O decomposition and N2O reduction with unreacted NH3 at temperatures >400 °C, thereby significantly lowering N2O emission levels. This promotional effect bodes well for use in many industrial deNO x applications. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Effect of Fe-zeolite on formation of N2O in selective reduction of NO by NH3 over V2O5–WO3/TiO2 catalyst

Loading next page...
Springer Netherlands
Copyright © 2015 by Springer Science+Business Media Dordrecht
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial