Effect of Erythrodiol, A Natural Pentacyclic Triterpene from Olive Oil, on the Lipid Membrane Properties

Effect of Erythrodiol, A Natural Pentacyclic Triterpene from Olive Oil, on the Lipid Membrane... The effect of erythrodiol, a natural pentacyclic triterpene to which humans are exposed through nutrients, on the lipid membranes is studied using liposomes as a membrane model. Empty and erythrodiol-loaded liposomes were prepared by the reverse phase evaporation method followed by the extrusion and by the thin film hydration method. Liposomes were characterized in terms of size and zeta potential and were imaged by transmission electron microscopy (TEM) and atomic force microscopy (AFM). The effect of erythrodiol on thermotropic behavior of DPPC bilayers is also examined by differential scanning calorimetry (DSC). The DSC thermograms suggested that erythrodiol interacted with the polar head groups of phospholipids and may produce a disruption of the ordering of the alkyl chains. The diffraction light scattering analysis showed that erythrodiol-loaded liposomes presented a decrease in the vesicle size when compared to blank liposomes. Images obtained by TEM confirmed the formation of unilamellar and spherical liposomes. AFM images showed spherical vesicles and single lipid bilayers. The latter were more abundant in the preparations containing erythrodiol than in the blank ones. Moreover, erythrodiol-loaded liposomes tended to rupture into single lipid bilayers during scanning. The study may provide a better understanding of pentacyclic triterpenes–membrane interaction. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Effect of Erythrodiol, A Natural Pentacyclic Triterpene from Olive Oil, on the Lipid Membrane Properties

Loading next page...
 
/lp/springer_journal/effect-of-erythrodiol-a-natural-pentacyclic-triterpene-from-olive-oil-0oosk2m1dt
Publisher
Springer US
Copyright
Copyright © 2015 by Springer Science+Business Media New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-015-9821-x
Publisher site
See Article on Publisher Site

Abstract

The effect of erythrodiol, a natural pentacyclic triterpene to which humans are exposed through nutrients, on the lipid membranes is studied using liposomes as a membrane model. Empty and erythrodiol-loaded liposomes were prepared by the reverse phase evaporation method followed by the extrusion and by the thin film hydration method. Liposomes were characterized in terms of size and zeta potential and were imaged by transmission electron microscopy (TEM) and atomic force microscopy (AFM). The effect of erythrodiol on thermotropic behavior of DPPC bilayers is also examined by differential scanning calorimetry (DSC). The DSC thermograms suggested that erythrodiol interacted with the polar head groups of phospholipids and may produce a disruption of the ordering of the alkyl chains. The diffraction light scattering analysis showed that erythrodiol-loaded liposomes presented a decrease in the vesicle size when compared to blank liposomes. Images obtained by TEM confirmed the formation of unilamellar and spherical liposomes. AFM images showed spherical vesicles and single lipid bilayers. The latter were more abundant in the preparations containing erythrodiol than in the blank ones. Moreover, erythrodiol-loaded liposomes tended to rupture into single lipid bilayers during scanning. The study may provide a better understanding of pentacyclic triterpenes–membrane interaction.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Jul 4, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off