Effect of Engine Output on Maneuverability of a VLCC in Still Water and Adverse Weather Conditions

Effect of Engine Output on Maneuverability of a VLCC in Still Water and Adverse Weather Conditions In this study, an MMG-based maneuvering simulation method (Yasukawa and Yoshimura, J Mar Sci Technol 20(1):37–52, 1) was used to investigate the maneuverability of a VLCC in still water and adverse weather conditions. Specifically, the investigation involved a situation where the engine output of a VLCC was significantly reduced owing to advances in energy-saving technology. First, a VLCC with 30% reduced Energy Efficiency Design Index (EEDI) (IMO MEPC 63/23, Annex 8, Resolution MEPC.212(63), 2012 guidelines on the method of calculation on the attained EEDI for New Ships, 2) (Step3) is actually planned to the conventional VLCC (Step0) by adoption of energy efficiency devices, a large-diameter and low-revolution propeller, etc. Next, maneuvering simulations of two ships (Step0 and Step3) were performed in still water and adverse weather conditions. It was observed that Step3 satisfied IMO maneuvering criteria in the still water condition. However, the maneuverability of Step3 was worse than that of Step0 since the rudder force was reduced owing to the low propeller load, which resulted from the small engine output. Additionally, steady-state sailing performance of Step3 in adverse weather conditions, such as check helm, hull drift angle, and speed drop, generally worsened when compared with those of Step0. Furthermore, course changing ability also deteriorated in the case of Step3. However, the difference between the trajectories of Step0 and Step3 reduced with respect to the large Beaufort scale since the difference in the rudder force became less noticeable owing to the presence of large external lateral forces caused by strong winds and waves. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Marine Science and Technology Springer Journals

Effect of Engine Output on Maneuverability of a VLCC in Still Water and Adverse Weather Conditions

Loading next page...
 
/lp/springer_journal/effect-of-engine-output-on-maneuverability-of-a-vlcc-in-still-water-Jrtj6FsPlB
Publisher
Springer Japan
Copyright
Copyright © 2017 by The Author(s)
Subject
Engineering; Automotive Engineering; Engineering Fluid Dynamics; Engineering Design; Offshore Engineering; Mechanical Engineering
ISSN
0948-4280
eISSN
1437-8213
D.O.I.
10.1007/s00773-017-0435-0
Publisher site
See Article on Publisher Site

Abstract

In this study, an MMG-based maneuvering simulation method (Yasukawa and Yoshimura, J Mar Sci Technol 20(1):37–52, 1) was used to investigate the maneuverability of a VLCC in still water and adverse weather conditions. Specifically, the investigation involved a situation where the engine output of a VLCC was significantly reduced owing to advances in energy-saving technology. First, a VLCC with 30% reduced Energy Efficiency Design Index (EEDI) (IMO MEPC 63/23, Annex 8, Resolution MEPC.212(63), 2012 guidelines on the method of calculation on the attained EEDI for New Ships, 2) (Step3) is actually planned to the conventional VLCC (Step0) by adoption of energy efficiency devices, a large-diameter and low-revolution propeller, etc. Next, maneuvering simulations of two ships (Step0 and Step3) were performed in still water and adverse weather conditions. It was observed that Step3 satisfied IMO maneuvering criteria in the still water condition. However, the maneuverability of Step3 was worse than that of Step0 since the rudder force was reduced owing to the low propeller load, which resulted from the small engine output. Additionally, steady-state sailing performance of Step3 in adverse weather conditions, such as check helm, hull drift angle, and speed drop, generally worsened when compared with those of Step0. Furthermore, course changing ability also deteriorated in the case of Step3. However, the difference between the trajectories of Step0 and Step3 reduced with respect to the large Beaufort scale since the difference in the rudder force became less noticeable owing to the presence of large external lateral forces caused by strong winds and waves.

Journal

Journal of Marine Science and TechnologySpringer Journals

Published: Mar 18, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off