Effect of doubled CO2 on morphology: Inhibition of stomata development in growing birch (Betula platyphylla Suk.) leaves

Effect of doubled CO2 on morphology: Inhibition of stomata development in growing birch (Betula... Two-year old birch (Betula platyphylla Suk.) seedlings were grown in climatic chambers for 7 weeks under various conditions: (1) ambient CO2 concentration (350 ppm) and an ordinary nitrogen content in soil (2 mM NH4NO3); (2) ambient CO2 concentration and a high nitrogen rate (16 mM NH4NO3); (3) doubled CO2 concentration (700 ppm) and ordinary nitrogen content, and (4) doubled CO2 concentration and a high nitrogen rate. Doubled CO2 concentration in combination with the high nitrogen rate activated mostly seedling growth, e.g., stem thickening and leaf initiation. In this treatment, the maximum rate of apparent photosynthesis (A max) was twice as high as in control seedlings. At doubled CO2 concentration and ordinary nitrogen content, we observed the phenomenon of stomata absence from the upper leaf surface and doubling their number on the lower surface, whereas, at doubled CO2 concentration and a high nitrogen rate, stomata partition was essentially similar as in control leaves. The conclusion is that, when the balance between CO2 concentration and nitrogen rate is shifted, doubled CO2 concentration exerts a morphotropic effect on differentiation of young epidermal tissue. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Effect of doubled CO2 on morphology: Inhibition of stomata development in growing birch (Betula platyphylla Suk.) leaves

Loading next page...
 
/lp/springer_journal/effect-of-doubled-co2-on-morphology-inhibition-of-stomata-development-0UOCcSBf2u
Publisher
Nauka/Interperiodica
Copyright
Copyright © 2005 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Plant Sciences; Plant Physiology
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1007/s11183-005-0025-6
Publisher site
See Article on Publisher Site

Abstract

Two-year old birch (Betula platyphylla Suk.) seedlings were grown in climatic chambers for 7 weeks under various conditions: (1) ambient CO2 concentration (350 ppm) and an ordinary nitrogen content in soil (2 mM NH4NO3); (2) ambient CO2 concentration and a high nitrogen rate (16 mM NH4NO3); (3) doubled CO2 concentration (700 ppm) and ordinary nitrogen content, and (4) doubled CO2 concentration and a high nitrogen rate. Doubled CO2 concentration in combination with the high nitrogen rate activated mostly seedling growth, e.g., stem thickening and leaf initiation. In this treatment, the maximum rate of apparent photosynthesis (A max) was twice as high as in control seedlings. At doubled CO2 concentration and ordinary nitrogen content, we observed the phenomenon of stomata absence from the upper leaf surface and doubling their number on the lower surface, whereas, at doubled CO2 concentration and a high nitrogen rate, stomata partition was essentially similar as in control leaves. The conclusion is that, when the balance between CO2 concentration and nitrogen rate is shifted, doubled CO2 concentration exerts a morphotropic effect on differentiation of young epidermal tissue.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Apr 7, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off