Effect of doping on the temperature coefficient of resistance of polysilicon films

Effect of doping on the temperature coefficient of resistance of polysilicon films For doped polysilicon films, an experimental investigation is presented into the variation of temperature coefficient of resistance (TCR) with formation conditions, the dopants being rare-earth elements (Eu, Gd, and Yb), oxygen, germanium, and implanted boron or phosphorus. The sign and magnitude of the TCR are shown to be governed by the dopant concentrations and the conditions of postimplantation annealing. Common and specific features are identified in the behavior of TCR for undoped films and for doped ones differing in dopant and doping technique. A negative TCR is observed in undoped films and in ones doped with a rare-earth element or germanium. B or P ion implantation into films predoped with Ge is shown to give a positive TCR if the implant concentration exceeds 1018 atoms/cm3. With any of the dopants employed, raising the dopant concentration makes possible the transition from a negative to a positive TCR. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Microelectronics Springer Journals

Effect of doping on the temperature coefficient of resistance of polysilicon films

Loading next page...
 
/lp/springer_journal/effect-of-doping-on-the-temperature-coefficient-of-resistance-of-7i9lSTzplR
Publisher
Springer Journals
Copyright
Copyright © 2007 by Pleiades Publishing, Ltd.
Subject
Engineering; Electrical Engineering
ISSN
1063-7397
eISSN
1608-3415
D.O.I.
10.1134/S1063739707030031
Publisher site
See Article on Publisher Site

Abstract

For doped polysilicon films, an experimental investigation is presented into the variation of temperature coefficient of resistance (TCR) with formation conditions, the dopants being rare-earth elements (Eu, Gd, and Yb), oxygen, germanium, and implanted boron or phosphorus. The sign and magnitude of the TCR are shown to be governed by the dopant concentrations and the conditions of postimplantation annealing. Common and specific features are identified in the behavior of TCR for undoped films and for doped ones differing in dopant and doping technique. A negative TCR is observed in undoped films and in ones doped with a rare-earth element or germanium. B or P ion implantation into films predoped with Ge is shown to give a positive TCR if the implant concentration exceeds 1018 atoms/cm3. With any of the dopants employed, raising the dopant concentration makes possible the transition from a negative to a positive TCR.

Journal

Russian MicroelectronicsSpringer Journals

Published: May 25, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off