Effect of different biochars amendment on soil biological indicators in a calcareous soil

Effect of different biochars amendment on soil biological indicators in a calcareous soil Previous studies suggest that biochar has potential to benefit soil when used as an amendment, but only few studies have investigated how the different biochars affect the microbial activity of soil in a calcareous soil. Hence, to study the effect of the biochars obtained from wheat straw and cow manure and produced under different production conditions on two biological soil indicators, dehydrogenase activity and soil respiration, after 0, 60, and 120 days of incubation (DOI), an incubation experiment as a completely randomized design with factorial arrangement in three replicates was conducted in a calcareous soil. The results of the study showed that with increasing the pyrolysis temperature (300 and 500 °C) and pyrolysis residence times (1, 3, and 6 h) of biochars, regardless of feedstock source, the dehydrogenase activity and soil respiration decreased. Both maximum activity of dehydrogenase (20.93 μg TPF g−1 24 h−1) and maximum soil respiration (0.26 mg CO2 g−1 24 h−1) were found in the biochar produced from wheat straw at 300 °C, and the residence time of 1 h at the level of 10 t ha−1 and minimum of these soil biological traits was observed in control treatments (soil). Moreover, the maximum activity of dehydrogenase and soil respiration was observed in 60 DOI. Therefore, when applying biochar as an amendment for increasing microbial activity in calcareous soil, the production conditions of biochar, type of biochar, and long- and short-term effects of different biochars should be taken into consideration. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Science and Pollution Research Springer Journals

Effect of different biochars amendment on soil biological indicators in a calcareous soil

Loading next page...
 
/lp/springer_journal/effect-of-different-biochars-amendment-on-soil-biological-indicators-oTyR5sgOAf
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Environment; Environment, general; Environmental Chemistry; Ecotoxicology; Environmental Health; Atmospheric Protection/Air Quality Control/Air Pollution; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution
ISSN
0944-1344
eISSN
1614-7499
D.O.I.
10.1007/s11356-018-1682-2
Publisher site
See Article on Publisher Site

Abstract

Previous studies suggest that biochar has potential to benefit soil when used as an amendment, but only few studies have investigated how the different biochars affect the microbial activity of soil in a calcareous soil. Hence, to study the effect of the biochars obtained from wheat straw and cow manure and produced under different production conditions on two biological soil indicators, dehydrogenase activity and soil respiration, after 0, 60, and 120 days of incubation (DOI), an incubation experiment as a completely randomized design with factorial arrangement in three replicates was conducted in a calcareous soil. The results of the study showed that with increasing the pyrolysis temperature (300 and 500 °C) and pyrolysis residence times (1, 3, and 6 h) of biochars, regardless of feedstock source, the dehydrogenase activity and soil respiration decreased. Both maximum activity of dehydrogenase (20.93 μg TPF g−1 24 h−1) and maximum soil respiration (0.26 mg CO2 g−1 24 h−1) were found in the biochar produced from wheat straw at 300 °C, and the residence time of 1 h at the level of 10 t ha−1 and minimum of these soil biological traits was observed in control treatments (soil). Moreover, the maximum activity of dehydrogenase and soil respiration was observed in 60 DOI. Therefore, when applying biochar as an amendment for increasing microbial activity in calcareous soil, the production conditions of biochar, type of biochar, and long- and short-term effects of different biochars should be taken into consideration.

Journal

Environmental Science and Pollution ResearchSpringer Journals

Published: Mar 14, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off