Effect of Diet History on Prey and Pollen Food Choice by Two Lady Beetle Species

Effect of Diet History on Prey and Pollen Food Choice by Two Lady Beetle Species Mixed diets of prey and plant-provided foods, such as pollen, have been shown to benefit a wide range of arthropods. However, diet shifting between these two very different food sources remains poorly understood. We hypothesized that previous diet should influence subsequent time allocation between prey and plant food types; to reach a balanced diet, consumers are expected to allocate more time to resources previously lacking in their diet. We tested this hypothesis by observing the foraging choices of larvae of two omnivorous coccinellid species: Coccinella septempunctata L. and Hippodamia variegata (Goeze) (Coleoptera: Coccinellidae), following a diet history of prey, pollen or a mixed diet of both food types. Results showed an asymmetrical tendency of C. septempunctata larvae to complement their previous diet with unfamiliar food: larvae allocated more time to pollen feeding, but not to prey, when each of the foods was previously absent from their diet. Study results have important implications for the use of plant-provided food supplements to enhance biological control by these omnivorous consumers. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Insect Behavior Springer Journals

Effect of Diet History on Prey and Pollen Food Choice by Two Lady Beetle Species

Loading next page...
 
/lp/springer_journal/effect-of-diet-history-on-prey-and-pollen-food-choice-by-two-lady-KI9RdTx3yy
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Life Sciences; Entomology; Behavioral Sciences; Neurobiology; Agriculture; Animal Ecology; Evolutionary Biology
ISSN
0892-7553
eISSN
1572-8889
D.O.I.
10.1007/s10905-017-9630-4
Publisher site
See Article on Publisher Site

Abstract

Mixed diets of prey and plant-provided foods, such as pollen, have been shown to benefit a wide range of arthropods. However, diet shifting between these two very different food sources remains poorly understood. We hypothesized that previous diet should influence subsequent time allocation between prey and plant food types; to reach a balanced diet, consumers are expected to allocate more time to resources previously lacking in their diet. We tested this hypothesis by observing the foraging choices of larvae of two omnivorous coccinellid species: Coccinella septempunctata L. and Hippodamia variegata (Goeze) (Coleoptera: Coccinellidae), following a diet history of prey, pollen or a mixed diet of both food types. Results showed an asymmetrical tendency of C. septempunctata larvae to complement their previous diet with unfamiliar food: larvae allocated more time to pollen feeding, but not to prey, when each of the foods was previously absent from their diet. Study results have important implications for the use of plant-provided food supplements to enhance biological control by these omnivorous consumers.

Journal

Journal of Insect BehaviorSpringer Journals

Published: Jul 11, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off