Effect of Dicyclohexylcarbodiimide (DCCD) on Transport Parameters in the Frog Cornea Epithelium

Effect of Dicyclohexylcarbodiimide (DCCD) on Transport Parameters in the Frog Cornea Epithelium Dicyclohexylcarbodiimide (DCCD) is a carboxyl group modifier and it is an inhibitor of various ATPases. Present experiments, using an in vitro preparation, were designed to study whether DCCD affected the transporters of the bullfrog cornea epithelium, specifically, the Na+/K+ ATPase pump located in the basolateral membrane. For this purpose, corneas were impaled with microelectrodes and experiments were done under short-circuit current (I sc ) conditions. Addition of DCCD to a concentration of 10−4 m to the tear solution gave a marked decrease in I sc ; a marked depolarization of the intracellular potential, V o ; and a significant decrease in the apical membrane fractional resistance, fR o . There were small and variable although significant changes in the transepithelial conductance, g t . The effects may be explained by a decrease in the basolateral membrane K+ conductance, in combination with a partial inhibition of the Na+/K+-ATPase pump located in the basolateral membrane. There is also evidence for an increase in the apical membrane Cl− conductance. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Effect of Dicyclohexylcarbodiimide (DCCD) on Transport Parameters in the Frog Cornea Epithelium

Loading next page...
 
/lp/springer_journal/effect-of-dicyclohexylcarbodiimide-dccd-on-transport-parameters-in-the-gPJueuUGqG
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 2000 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s002320001035
Publisher site
See Article on Publisher Site

Abstract

Dicyclohexylcarbodiimide (DCCD) is a carboxyl group modifier and it is an inhibitor of various ATPases. Present experiments, using an in vitro preparation, were designed to study whether DCCD affected the transporters of the bullfrog cornea epithelium, specifically, the Na+/K+ ATPase pump located in the basolateral membrane. For this purpose, corneas were impaled with microelectrodes and experiments were done under short-circuit current (I sc ) conditions. Addition of DCCD to a concentration of 10−4 m to the tear solution gave a marked decrease in I sc ; a marked depolarization of the intracellular potential, V o ; and a significant decrease in the apical membrane fractional resistance, fR o . There were small and variable although significant changes in the transepithelial conductance, g t . The effects may be explained by a decrease in the basolateral membrane K+ conductance, in combination with a partial inhibition of the Na+/K+-ATPase pump located in the basolateral membrane. There is also evidence for an increase in the apical membrane Cl− conductance.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Mar 15, 2000

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off