Effect of deposition conditions on properties of nanostructured magnesium hydroxide powders

Effect of deposition conditions on properties of nanostructured magnesium hydroxide powders Change in the dispersity, microstructure, and adsorption properties of mesoporous magnesium hydroxide powders synthesized by the precipitation method from solutions upon introduction of surfactants and under the action of microwave and ultrasonic irradiation was studied. Highly dispersed nanostructured Mg(OH)2 powders were obtained with average sizes of primary and secondary particles of, respectively, 13–27 and 180–383 nm. The specific surface area, pore volume, and average pore diameter of the samples under study varied, depending on the preparation conditions, within the ranges 86–98 m2 g–1, 0.491–0.737 cm3 g–1, and 24–32 nm, respectively. It was shown that highly dispersed mesoporous magnesium hydroxide powders can be directionally synthesized by the precipitation method, which opens up wide opportunities for their application as nanoreactors for synthesis of nanosize isolated particles and development of poly-path catalysts on their basis. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Applied Chemistry Springer Journals

Effect of deposition conditions on properties of nanostructured magnesium hydroxide powders

Loading next page...
 
/lp/springer_journal/effect-of-deposition-conditions-on-properties-of-nanostructured-kNe1ULhK7I
Publisher
Springer Journals
Copyright
Copyright © 2017 by Pleiades Publishing, Ltd.
Subject
Chemistry; Chemistry/Food Science, general; Industrial Chemistry/Chemical Engineering
ISSN
1070-4272
eISSN
1608-3296
D.O.I.
10.1134/S1070427217010013
Publisher site
See Article on Publisher Site

Abstract

Change in the dispersity, microstructure, and adsorption properties of mesoporous magnesium hydroxide powders synthesized by the precipitation method from solutions upon introduction of surfactants and under the action of microwave and ultrasonic irradiation was studied. Highly dispersed nanostructured Mg(OH)2 powders were obtained with average sizes of primary and secondary particles of, respectively, 13–27 and 180–383 nm. The specific surface area, pore volume, and average pore diameter of the samples under study varied, depending on the preparation conditions, within the ranges 86–98 m2 g–1, 0.491–0.737 cm3 g–1, and 24–32 nm, respectively. It was shown that highly dispersed mesoporous magnesium hydroxide powders can be directionally synthesized by the precipitation method, which opens up wide opportunities for their application as nanoreactors for synthesis of nanosize isolated particles and development of poly-path catalysts on their basis.

Journal

Russian Journal of Applied ChemistrySpringer Journals

Published: Apr 25, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off