Effect of cryogenic treatment on the microstructure and the wear behavior of WC-Co end mills for machining of Ti6Al4V titanium alloy

Effect of cryogenic treatment on the microstructure and the wear behavior of WC-Co end mills for... This paper compares some of the key machinability aspects acquired during milling of Ti6Al4V titanium alloy with uncoated and coated cryogenically treated end mills. Tool wear, coefficient of friction, cutting force, and chip morphology were the major criteria considered. Ti6Al4V is one of the titanium alloys that are widely used in aerospace and biomedical applications; however, it has a poor machinability and tribological properties. To evaluate the performance of cryogenically treated end mills, milling operations using a force dynamometer and dry sliding tests were conducted. The milling operations were conducted with a cutting speed of 90 m/min, a feed rate of 0.11 mm/tooth, a 1-mm axial depth of cut, and a 10-mm radial depth of cut under dry cutting conditions. The dry sliding tests were conducted using a tribometer with a ball-on-disk geometry under 10 N load and a speed of 5 cm/s. The milling test results showed that flank wear, chipping, and tool breakage were the wear mechanisms of the end mills. The cutting force measurements and the dry sliding tests showed that the cutting force and friction force values decreased when the cryogenic treatment time increased. As a result of the study, tools treated cryogenically for 36 h showed the best performance for the cutting force, friction force, and tool wear criteria. These improvements were characterized with hardness, fracture toughness, scanning electron microscope (SEM), energy-dispersive spectroscopy (EDS), and X-ray diffraction (XRD) analyses. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The International Journal of Advanced Manufacturing Technology Springer Journals

Effect of cryogenic treatment on the microstructure and the wear behavior of WC-Co end mills for machining of Ti6Al4V titanium alloy

Loading next page...
 
/lp/springer_journal/effect-of-cryogenic-treatment-on-the-microstructure-and-the-wear-GZpPig8J90
Publisher
Springer London
Copyright
Copyright © 2017 by Springer-Verlag London Ltd., part of Springer Nature
Subject
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
ISSN
0268-3768
eISSN
1433-3015
D.O.I.
10.1007/s00170-017-1444-1
Publisher site
See Article on Publisher Site

Abstract

This paper compares some of the key machinability aspects acquired during milling of Ti6Al4V titanium alloy with uncoated and coated cryogenically treated end mills. Tool wear, coefficient of friction, cutting force, and chip morphology were the major criteria considered. Ti6Al4V is one of the titanium alloys that are widely used in aerospace and biomedical applications; however, it has a poor machinability and tribological properties. To evaluate the performance of cryogenically treated end mills, milling operations using a force dynamometer and dry sliding tests were conducted. The milling operations were conducted with a cutting speed of 90 m/min, a feed rate of 0.11 mm/tooth, a 1-mm axial depth of cut, and a 10-mm radial depth of cut under dry cutting conditions. The dry sliding tests were conducted using a tribometer with a ball-on-disk geometry under 10 N load and a speed of 5 cm/s. The milling test results showed that flank wear, chipping, and tool breakage were the wear mechanisms of the end mills. The cutting force measurements and the dry sliding tests showed that the cutting force and friction force values decreased when the cryogenic treatment time increased. As a result of the study, tools treated cryogenically for 36 h showed the best performance for the cutting force, friction force, and tool wear criteria. These improvements were characterized with hardness, fracture toughness, scanning electron microscope (SEM), energy-dispersive spectroscopy (EDS), and X-ray diffraction (XRD) analyses.

Journal

The International Journal of Advanced Manufacturing TechnologySpringer Journals

Published: Dec 2, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off