The fate and transport of polychlorinated biphenyls (PCBs), a class of persistent organic compounds, in soils was markedly affected by their sorption/desorption on soil organic matters (SOM) due to high hydrophobicity of PCBs. Humic acid (HA), an important fraction of SOM, has no steady composition and microstructure from different origins, resulting in their diverse sorption capacity. Therefore, the effect of composition and microstructure of HA on sorption of 3,3′,4,4′-tetrachlorobiphenyl (PCB77) was investigated in this study. The primary sorption mechanism of PCB77 on HAs was also demonstrated by using Fourier transform infrared (FTIR) and solid-state carbon-13 nuclear magnetic resonance (13C-NMR) spectroscopy analysis. Elemental content analysis of three HAs showed that the content of unsaturated C (the total of aromatic, carboxylic, and carbonyl carbon) followed an order of YHA>SHA>AHA. Furthermore, YHA and SHA had remarkably rough and complicated particle surfaces but AHA had relatively smooth surface and the well-proportioned and interspersed particle sizes. The results of the sorption experiment showed that the sorption capacity of PCB77 on HAs followed a similar order of YHA>SHA>AHA, indicating the content of unsaturated C of HAs controlled the sorption of PCB77 on HAs. Sorption of PCB77 on either AHA or SHA did not change with increasing ionic strength of background solution, implying that there was no H-bond or electrostatic interaction between PCB77 and HAs. The result of FTIR and 13C-NMR spectra showed the primarily possible mechanism was π-π conjugative interaction and hydrophobic binding between PCB77 and HAs.
Environmental Science and Pollution Research – Springer Journals
Published: Mar 12, 2018
It’s your single place to instantly
discover and read the research
that matters to you.
Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.
All for just $49/month
Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly
Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.
Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.
Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.
All the latest content is available, no embargo periods.
“Hi guys, I cannot tell you how much I love this resource. Incredible. I really believe you've hit the nail on the head with this site in regards to solving the research-purchase issue.”
Daniel C.
“Whoa! It’s like Spotify but for academic articles.”
@Phil_Robichaud
“I must say, @deepdyve is a fabulous solution to the independent researcher's problem of #access to #information.”
@deepthiw
“My last article couldn't be possible without the platform @deepdyve that makes journal papers cheaper.”
@JoseServera
DeepDyve Freelancer | DeepDyve Pro | |
---|---|---|
Price | FREE | $49/month |
Save searches from | ||
Create folders to | ||
Export folders, citations | ||
Read DeepDyve articles | Abstract access only | Unlimited access to over |
20 pages / month | ||
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.