Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Effect of chilling temperatures on osmotic water permeability and aquaporin activity in the plasma membranes from pea roots

Effect of chilling temperatures on osmotic water permeability and aquaporin activity in the... The osmotic water permeability of plasma membrane vesicles was examined after isolation from the roots of 7-day-old etiolated pea ( Pisum sativum, cv. Orlovchanin) seedlings grown at optimal temperature and those exposed to 1-day chilling at 8°C in the end of the growth period. The homogenization medium for obtaining plasma membranes was supplemented with either SH-reagents or protein phosphatase inhibitors. The plasmalemma vesicles were purified from the microsome fraction by means of two-phase polymer system. The osmotic water permeability of membrane vesicles was evaluated from the rate of their osmotically induced shrinkage. The lowering of growth temperature was accompanied by the increase in osmotic water permeability of plasmalemma. These changes occurred without the corresponding increase in aquaporin content or permeability of membrane lipid matrix. The membranes from cooled seedlings were markedly depleted in the content of SH-groups. Furthermore, the treatment of membrane samples with a thiol-reducing agent, tributylphosphine did not raise the SH-group content in membranes from chilled plants, unlike such changes in membranes from warm-grown plants. When the homogenization medium contained dithiothreitol and phenylarsine oxide (an inhibitor of tyrosine protein phosphatases), the osmotic permeability of plasmalemma in preparations from warm-grown seedlings also increased. Based on these results, it is supposed that aquaporin-mediated water permeability of membranes is regulated through different pathways under optimal and adverse conditions for plant growth. Direct action of endogenous SH redox regulators on aquaporin activity is likely under optimal growth conditions, while protein phosphatase might mediate changes in aquaporin activity under unfavorable growth conditions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Effect of chilling temperatures on osmotic water permeability and aquaporin activity in the plasma membranes from pea roots

Loading next page...
 
/lp/springer_journal/effect-of-chilling-temperatures-on-osmotic-water-permeability-and-E44cHye10c

References (35)

Publisher
Springer Journals
Copyright
Copyright © 2009 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Sciences ; Plant Physiology
ISSN
1021-4437
eISSN
1608-3407
DOI
10.1134/S1021443709050082
Publisher site
See Article on Publisher Site

Abstract

The osmotic water permeability of plasma membrane vesicles was examined after isolation from the roots of 7-day-old etiolated pea ( Pisum sativum, cv. Orlovchanin) seedlings grown at optimal temperature and those exposed to 1-day chilling at 8°C in the end of the growth period. The homogenization medium for obtaining plasma membranes was supplemented with either SH-reagents or protein phosphatase inhibitors. The plasmalemma vesicles were purified from the microsome fraction by means of two-phase polymer system. The osmotic water permeability of membrane vesicles was evaluated from the rate of their osmotically induced shrinkage. The lowering of growth temperature was accompanied by the increase in osmotic water permeability of plasmalemma. These changes occurred without the corresponding increase in aquaporin content or permeability of membrane lipid matrix. The membranes from cooled seedlings were markedly depleted in the content of SH-groups. Furthermore, the treatment of membrane samples with a thiol-reducing agent, tributylphosphine did not raise the SH-group content in membranes from chilled plants, unlike such changes in membranes from warm-grown plants. When the homogenization medium contained dithiothreitol and phenylarsine oxide (an inhibitor of tyrosine protein phosphatases), the osmotic permeability of plasmalemma in preparations from warm-grown seedlings also increased. Based on these results, it is supposed that aquaporin-mediated water permeability of membranes is regulated through different pathways under optimal and adverse conditions for plant growth. Direct action of endogenous SH redox regulators on aquaporin activity is likely under optimal growth conditions, while protein phosphatase might mediate changes in aquaporin activity under unfavorable growth conditions.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Sep 8, 2009

There are no references for this article.