Access the full text.
Sign up today, get DeepDyve free for 14 days.
CrFe2NiMnV0.25C0.075 and CrFe2NiMnV0.25C0.125 high-entropy alloys (HEA) were processed by high-pressure torsion (HPT) followed by post-deformation annealing (PDA) at 823 and 1273 K. This severe plastic deformation led to a significant microhardness increment (by a factor of ~ 2.5) up to ~ 435 Hv and the microstructures exhibited exceptional grain refinement with average grain sizes of ~ 30 nm in both HEAs. It was found that the hardness increased up to ~ 555 Hv after annealing at 823 K due to precipitation of the σ phase, but thereafter the hardness decreased to ~ 195 Hv after annealing at 1273 K which was very close to the value of the initial coarse-grained condition. This behavior is caused by a combination of grain coarsening and a dissolution of the precipitates. These results suggest that the nanocrystalline HEA facilitates the formation of precipitates owing to the large number of grain boundaries which serve both as fast diffusion pathways and as preferential nucleation sites for precipitate formation.
Journal of Materials Science – Springer Journals
Published: May 23, 2018
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.