Effect of buoyancy on the wakes of circular and square cylinders: a schlieren-interferometric study

Effect of buoyancy on the wakes of circular and square cylinders: a schlieren-interferometric study Wakes behind heated cylinders, circular, and square have been experimentally investigated at low-Reynolds numbers. The electrically heated cylinder is mounted in a vertical airflow facility such that buoyancy aids the inertia of main flow. The operating parameters, i.e., Reynolds number and Richardson number are varied to examine flow behavior over a range of experimental conditions from forced to mixed convection regime. Laser schlieren-interferometry has been used for visualization and analysis of flow structures. Complete vortex shedding sequence has been recorded using a high-speed camera. The results on detailed dynamical characteristics of vortical structures, i.e., their size, shape and phase, Strouhal number, power spectra, convection velocity, phase shift, vortex inception length, and fluctuations are reported. On heating, alteration of organized (coherent) structures with respect to shape, size and their movement is readily perceived from instantaneous Schlieren images before they reduce to a steady plume. For both cylinders, Strouhal number shows a slow increase with an increase in Richardson number. At a critical value, there is complete disappearance of vortex shedding and a drop in Strouhal number to zero. The corresponding spectra evolve from being highly peaked at the vortex shedding frequency to a broadband appearance when vortex shedding is suppressed. The geometry of vortex structures transforms to a slender shape before shedding is suppressed. At this heating level, absence of multiple peaks in power spectra at cylinder centerline indicates absence of interaction between opposite shear layers. The convection velocity of vortices increases in stream wise direction to an asymptotic value and its variation is a function of Richardson number. The convection speed abruptly falls to zero at critical Richardson number. The phase difference of shed vortices between upstream and downstream location increases with an increase in Richardson number. Velocity profiles show an increase in fluid speed and beyond the critical point, buoyancy forces add enough momentum to cancel momentum deficit due to the cylinder. Overall, the combined effect of temperature gradient on the separating shear layer velocity profile in near field and vortical structures interaction in far field influences wake instability of a heated cylinder. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Effect of buoyancy on the wakes of circular and square cylinders: a schlieren-interferometric study

Loading next page...
 
/lp/springer_journal/effect-of-buoyancy-on-the-wakes-of-circular-and-square-cylinders-a-B3kR08cfg0
Publisher
Springer-Verlag
Copyright
Copyright © 2007 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-007-0329-8
Publisher site
See Article on Publisher Site

Abstract

Wakes behind heated cylinders, circular, and square have been experimentally investigated at low-Reynolds numbers. The electrically heated cylinder is mounted in a vertical airflow facility such that buoyancy aids the inertia of main flow. The operating parameters, i.e., Reynolds number and Richardson number are varied to examine flow behavior over a range of experimental conditions from forced to mixed convection regime. Laser schlieren-interferometry has been used for visualization and analysis of flow structures. Complete vortex shedding sequence has been recorded using a high-speed camera. The results on detailed dynamical characteristics of vortical structures, i.e., their size, shape and phase, Strouhal number, power spectra, convection velocity, phase shift, vortex inception length, and fluctuations are reported. On heating, alteration of organized (coherent) structures with respect to shape, size and their movement is readily perceived from instantaneous Schlieren images before they reduce to a steady plume. For both cylinders, Strouhal number shows a slow increase with an increase in Richardson number. At a critical value, there is complete disappearance of vortex shedding and a drop in Strouhal number to zero. The corresponding spectra evolve from being highly peaked at the vortex shedding frequency to a broadband appearance when vortex shedding is suppressed. The geometry of vortex structures transforms to a slender shape before shedding is suppressed. At this heating level, absence of multiple peaks in power spectra at cylinder centerline indicates absence of interaction between opposite shear layers. The convection velocity of vortices increases in stream wise direction to an asymptotic value and its variation is a function of Richardson number. The convection speed abruptly falls to zero at critical Richardson number. The phase difference of shed vortices between upstream and downstream location increases with an increase in Richardson number. Velocity profiles show an increase in fluid speed and beyond the critical point, buoyancy forces add enough momentum to cancel momentum deficit due to the cylinder. Overall, the combined effect of temperature gradient on the separating shear layer velocity profile in near field and vortical structures interaction in far field influences wake instability of a heated cylinder.

Journal

Experiments in FluidsSpringer Journals

Published: Jun 15, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off