Effect of Anion Transport Blockers on CFTR in the Human Sweat Duct

Effect of Anion Transport Blockers on CFTR in the Human Sweat Duct Cystic fibrosis transmembrane conductance regulator (CFTR) is a protein kinase A (PKA) and ATP regulated Cl- channel. Studies using mostly ex vivo systems suggested diphenylamine-2-carboxylate (DPC), 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) and glybenclamide inhibit CFTR Cl- conductance (CFTR GCl). However, the properties of inhibition in a native epithelial membrane have not been well defined. The objective of this study was to determine and compare the inhibitory properties of the aforementioned inhibitors as well as the structurally related anion-exchange blockers (stilbenes) including 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic acid (SITS), 4,4'-dinitrostilbene-2,2'-disulfonic acid (DNDS) in the microperfused intact and basilaterally permeabilized native sweat duct epithelium. All of these inhibitors blocked CFTR in a dose-dependent manner from the cytoplasmic side of the basilaterally permeabilized ducts, but none of these inhibitors blocked CFTR GCl from the luminal surface. We excluded inhibitor interference with a protein kinase phosphorylation activation process by "irreversibly" thiophosphorylating CFTR prior to inhibitor application. We then activated CFTR GCl by adding 5 mM ATP. At a concentration of 10?4 M, NPPB, DPC, glybenclamide, and DIDS were equipotent and blocked ~50% of irreversibly phosphorylated and ATP-activated CFTR GCl (DIDS = 49 ± 10% > NPPB = 46 ± 10% > DPC = 38 ± 7% > glybenclamide = 34 ± 5%; values are mean ± SE expressed as % inhibition from the control). The degree of inhibition may be limited by inhibitor solubility limits, since DIDS, which is soluble to 1 mM concentration, inhibited 85% of CFTR GCl at this concentration. All the inhibitors studied primarily blocked CFTR from the cytoplasmic side and all inhibition appeared to be independent of metabolic and phosphorylation processes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Effect of Anion Transport Blockers on CFTR in the Human Sweat Duct

Loading next page...
 
/lp/springer_journal/effect-of-anion-transport-blockers-on-cftr-in-the-human-sweat-duct-tVQJYs1iUa
Publisher
Springer-Verlag
Copyright
Copyright © 2002 by Springer-Verlag New York Inc.
Subject
Life Sciences; Human Physiology; Biochemistry, general
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-001-0192-0
Publisher site
See Article on Publisher Site

Abstract

Cystic fibrosis transmembrane conductance regulator (CFTR) is a protein kinase A (PKA) and ATP regulated Cl- channel. Studies using mostly ex vivo systems suggested diphenylamine-2-carboxylate (DPC), 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) and glybenclamide inhibit CFTR Cl- conductance (CFTR GCl). However, the properties of inhibition in a native epithelial membrane have not been well defined. The objective of this study was to determine and compare the inhibitory properties of the aforementioned inhibitors as well as the structurally related anion-exchange blockers (stilbenes) including 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic acid (SITS), 4,4'-dinitrostilbene-2,2'-disulfonic acid (DNDS) in the microperfused intact and basilaterally permeabilized native sweat duct epithelium. All of these inhibitors blocked CFTR in a dose-dependent manner from the cytoplasmic side of the basilaterally permeabilized ducts, but none of these inhibitors blocked CFTR GCl from the luminal surface. We excluded inhibitor interference with a protein kinase phosphorylation activation process by "irreversibly" thiophosphorylating CFTR prior to inhibitor application. We then activated CFTR GCl by adding 5 mM ATP. At a concentration of 10?4 M, NPPB, DPC, glybenclamide, and DIDS were equipotent and blocked ~50% of irreversibly phosphorylated and ATP-activated CFTR GCl (DIDS = 49 ± 10% > NPPB = 46 ± 10% > DPC = 38 ± 7% > glybenclamide = 34 ± 5%; values are mean ± SE expressed as % inhibition from the control). The degree of inhibition may be limited by inhibitor solubility limits, since DIDS, which is soluble to 1 mM concentration, inhibited 85% of CFTR GCl at this concentration. All the inhibitors studied primarily blocked CFTR from the cytoplasmic side and all inhibition appeared to be independent of metabolic and phosphorylation processes.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Jan 1, 2001

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off