Effect of alumina nano additives into biodiesel-diesel blends on the combustion performance and emission characteristics of a diesel engine with exhaust gas recirculation

Effect of alumina nano additives into biodiesel-diesel blends on the combustion performance and... In the present study, the combined effect of alumina nanoparticles into the Calophyllum inophyllum biodiesel blend and exhaust gas recirculation on the combustion, performance, and emission characteristics of a diesel engine was investigated. The alumina (Al2O3) nanoparticles with the mass fraction of 40 ppm were dispersed into the C. inophyllum biodiesel blend (20% of C. inophyllum biodiesel + 80% of diesel (CIB20)) by the ultrasonication process. Further, the exhaust gas recirculation was adopted to control the oxides of nitrogen (NOx) emissions of a diesel engine. The experiments were conducted on a single cylinder diesel engine with the diesel, CIB20, 20% of C. inophyllum biodiesel + 80% of diesel + 40 ppm Al2O3 nanoparticles (CIB20ANP40), CIB20 + 20% exhaust gas recirculation (EGR), and CIB20ANP40 + 20% EGR fuel samples at different load conditions. The results reveal that brake thermal efficiency of CIB20ANP40 fuel increased by 5.04 and 7.71% compared to the CIB20 and CIB20ANP40 + 20% EGR fuels, respectively. The addition of alumina nanoparticles to the CIB20 fuel, CO, and hydrocarbon (HC) emissions were was reduced compared to the CIB20 fuel. The smoke opacity was decreased with the addition of alumina nanoparticles to the CIB20 fuel by 7.3% compared to the CIB20 fuel. The NOx emissions for the CIB20ANP40 + 20% EGR fuel was decreased by 36.84, 31.53, and 17.67% compared to the CIB20, CIB20ANP40, and CIB20 + 20% EGR fuel samples at full load condition. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Science and Pollution Research Springer Journals

Effect of alumina nano additives into biodiesel-diesel blends on the combustion performance and emission characteristics of a diesel engine with exhaust gas recirculation

Loading next page...
 
/lp/springer_journal/effect-of-alumina-nano-additives-into-biodiesel-diesel-blends-on-the-4dIBCQiUvv
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Environment; Environment, general; Environmental Chemistry; Ecotoxicology; Environmental Health; Atmospheric Protection/Air Quality Control/Air Pollution; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution
ISSN
0944-1344
eISSN
1614-7499
D.O.I.
10.1007/s11356-018-2366-7
Publisher site
See Article on Publisher Site

Abstract

In the present study, the combined effect of alumina nanoparticles into the Calophyllum inophyllum biodiesel blend and exhaust gas recirculation on the combustion, performance, and emission characteristics of a diesel engine was investigated. The alumina (Al2O3) nanoparticles with the mass fraction of 40 ppm were dispersed into the C. inophyllum biodiesel blend (20% of C. inophyllum biodiesel + 80% of diesel (CIB20)) by the ultrasonication process. Further, the exhaust gas recirculation was adopted to control the oxides of nitrogen (NOx) emissions of a diesel engine. The experiments were conducted on a single cylinder diesel engine with the diesel, CIB20, 20% of C. inophyllum biodiesel + 80% of diesel + 40 ppm Al2O3 nanoparticles (CIB20ANP40), CIB20 + 20% exhaust gas recirculation (EGR), and CIB20ANP40 + 20% EGR fuel samples at different load conditions. The results reveal that brake thermal efficiency of CIB20ANP40 fuel increased by 5.04 and 7.71% compared to the CIB20 and CIB20ANP40 + 20% EGR fuels, respectively. The addition of alumina nanoparticles to the CIB20 fuel, CO, and hydrocarbon (HC) emissions were was reduced compared to the CIB20 fuel. The smoke opacity was decreased with the addition of alumina nanoparticles to the CIB20 fuel by 7.3% compared to the CIB20 fuel. The NOx emissions for the CIB20ANP40 + 20% EGR fuel was decreased by 36.84, 31.53, and 17.67% compared to the CIB20, CIB20ANP40, and CIB20 + 20% EGR fuel samples at full load condition.

Journal

Environmental Science and Pollution ResearchSpringer Journals

Published: Jun 4, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off