Effect of alternating magnetic field on ontogenesis and morphophysiological characteristics of radish plants of different magnetic orientation

Effect of alternating magnetic field on ontogenesis and morphophysiological characteristics of... Effect of weak horizontal alternating magnetic field (AMF) with a frequency of 50 Hz and intensity of 400 A/m on seed formation and morphophysiological characteristics was investigated in radish (Raphanus sativus L.) plants of major types of magnetic orientation (TMO): North–South (NS) and West–East (WE). AMF retarded the passage through all the stages of ontogenesis; as compared with control material, the next leaves emerged slower, and the transition to formation of flower-bearing stems, budding, flowering, and production of pods and mature seeds was delayed. In plants of NS TMO exposed to AMP, the number of pods and seeds and the weight of seeds decreased, while these characteristics rose in WE TMO. AMF acted as an environmental factor differentiating plants’ response depending on their type of magnetic orientation. Dissimilar response to the magnetic field is associated with their physiological status. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Effect of alternating magnetic field on ontogenesis and morphophysiological characteristics of radish plants of different magnetic orientation

Loading next page...
 
/lp/springer_journal/effect-of-alternating-magnetic-field-on-ontogenesis-and-wu0p57hdOy
Publisher
Pleiades Publishing
Copyright
Copyright © 2017 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443717030128
Publisher site
See Article on Publisher Site

Abstract

Effect of weak horizontal alternating magnetic field (AMF) with a frequency of 50 Hz and intensity of 400 A/m on seed formation and morphophysiological characteristics was investigated in radish (Raphanus sativus L.) plants of major types of magnetic orientation (TMO): North–South (NS) and West–East (WE). AMF retarded the passage through all the stages of ontogenesis; as compared with control material, the next leaves emerged slower, and the transition to formation of flower-bearing stems, budding, flowering, and production of pods and mature seeds was delayed. In plants of NS TMO exposed to AMP, the number of pods and seeds and the weight of seeds decreased, while these characteristics rose in WE TMO. AMF acted as an environmental factor differentiating plants’ response depending on their type of magnetic orientation. Dissimilar response to the magnetic field is associated with their physiological status.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Apr 29, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off