Effect of Alloxan Diabetes and Subsequent Insulin Treatment on Temperature Kinetics Properties of Succinate Oxidase Activity in Rat Kidney Mitochondria

Effect of Alloxan Diabetes and Subsequent Insulin Treatment on Temperature Kinetics Properties of... Early and late effects of alloxan diabetes and subsequent treatment with insulin on the temperature kinetics properties of succinate oxidase (SO) activity in rat kidney mitochondria were examined. In diabetic animals SO activity increased significantly and the increase was more pronounced at the late stage. Insulin treatment partially restored SO activity. However, the effect was temperature-dependent. In diabetic animals the energy of activation in the low temperature range (EL) increased significantly while that in the high temperature range (EH) decreased. The latter seems to be responsible for improving catalytic efficiency in the diabetic state. Insulin treatment normalized EH only in the 1-month diabetic group. The phase transition temperature (Tt), decreased in diabetic animals. Insulin treatment caused an increase beyond the control value in Tt in 1-month diabetic animals. The results suggest that insulin status-dependent modulation of SO activity is a complex process. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Effect of Alloxan Diabetes and Subsequent Insulin Treatment on Temperature Kinetics Properties of Succinate Oxidase Activity in Rat Kidney Mitochondria

Loading next page...
 
/lp/springer_journal/effect-of-alloxan-diabetes-and-subsequent-insulin-treatment-on-g92SieXdO6
Publisher
Springer Journals
Copyright
Copyright © 2007 by Springer Science+Business Media, Inc.
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-006-0041-2
Publisher site
See Article on Publisher Site

Abstract

Early and late effects of alloxan diabetes and subsequent treatment with insulin on the temperature kinetics properties of succinate oxidase (SO) activity in rat kidney mitochondria were examined. In diabetic animals SO activity increased significantly and the increase was more pronounced at the late stage. Insulin treatment partially restored SO activity. However, the effect was temperature-dependent. In diabetic animals the energy of activation in the low temperature range (EL) increased significantly while that in the high temperature range (EH) decreased. The latter seems to be responsible for improving catalytic efficiency in the diabetic state. Insulin treatment normalized EH only in the 1-month diabetic group. The phase transition temperature (Tt), decreased in diabetic animals. Insulin treatment caused an increase beyond the control value in Tt in 1-month diabetic animals. The results suggest that insulin status-dependent modulation of SO activity is a complex process.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Mar 8, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off