Effect of Al2O3 + 4SiO2 Additives on Sintering Behavior and Thermal Shock Resistance of MgO-Based Ceramics

Effect of Al2O3 + 4SiO2 Additives on Sintering Behavior and Thermal Shock Resistance of MgO-Based... In order to improve the sinterability and thermal shock resistance of ceramic based on MgO magnesium oxide of micron grain size composition is used as the main starting raw material with additions of nano-Al2O3 and nano-SiO2. Ceramic based on MgO is prepared by adding different amounts of Al2O3 and SiO2 to MgO in a molar ratio 1:4. The mixture is molded and sintered in an air atmosphere. Ceramic phase composition and microstructure are studied in an x-ray diffractometer and a scanning electron microscope. The effect of adding different amounts of Al2O3 + 4SiO2 on sinterability and thermal shock resistance of MgO base ceramic is studied. Addition of Al2O3 + 4SiO2 has a favorable effect on test ceramic sinterability and thermal shock resistance. During reaction of solid substances there is formation of magnesia-alumina-spinel and forsterite that leads to retardation of periclase phase grain migration. The degree of specimen compaction is improved and this has a favorable effect on sinterability of ceramic based on MgO. The degree of compaction increases as there is an increase in sintering temperature in the range 1400 to 1500°C. In addition, specimen thermal shock resistance is improved due to connection between microcracks. As a result of adding Al2O3 in an amount up to 30 wt.% + SiO2 in an amount up to 45 wt.% MgO sinterability and thermal shock resistance are improved. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Refractories and Industrial Ceramics Springer Journals

Effect of Al2O3 + 4SiO2 Additives on Sintering Behavior and Thermal Shock Resistance of MgO-Based Ceramics

Loading next page...
 
/lp/springer_journal/effect-of-al2o3-4sio2-additives-on-sintering-behavior-and-thermal-Rkl6CRbGoo
Publisher
Springer US
Copyright
Copyright © 2016 by Springer Science+Business Media New York
Subject
Materials Science; Characterization and Evaluation of Materials; Materials Science, general; Ceramics, Glass, Composites, Natural Materials
ISSN
1083-4877
eISSN
1573-9139
D.O.I.
10.1007/s11148-016-9996-4
Publisher site
See Article on Publisher Site

Abstract

In order to improve the sinterability and thermal shock resistance of ceramic based on MgO magnesium oxide of micron grain size composition is used as the main starting raw material with additions of nano-Al2O3 and nano-SiO2. Ceramic based on MgO is prepared by adding different amounts of Al2O3 and SiO2 to MgO in a molar ratio 1:4. The mixture is molded and sintered in an air atmosphere. Ceramic phase composition and microstructure are studied in an x-ray diffractometer and a scanning electron microscope. The effect of adding different amounts of Al2O3 + 4SiO2 on sinterability and thermal shock resistance of MgO base ceramic is studied. Addition of Al2O3 + 4SiO2 has a favorable effect on test ceramic sinterability and thermal shock resistance. During reaction of solid substances there is formation of magnesia-alumina-spinel and forsterite that leads to retardation of periclase phase grain migration. The degree of specimen compaction is improved and this has a favorable effect on sinterability of ceramic based on MgO. The degree of compaction increases as there is an increase in sintering temperature in the range 1400 to 1500°C. In addition, specimen thermal shock resistance is improved due to connection between microcracks. As a result of adding Al2O3 in an amount up to 30 wt.% + SiO2 in an amount up to 45 wt.% MgO sinterability and thermal shock resistance are improved.

Journal

Refractories and Industrial CeramicsSpringer Journals

Published: Dec 3, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off