Effect and removal of bisphenol A by two extremophilic microalgal strains (Chlorophyta)

Effect and removal of bisphenol A by two extremophilic microalgal strains (Chlorophyta) The effects and the removal efficiency of bisphenol A (BPA) on two extremophilic Chlorophyta strains, an alkaliphilic Picocystis and a thermophilic Graesiella, were assessed. BPA was shown to inhibit the growth and photosynthesis of both species, but to a greater extent for Graesiella. The growth IC50 (4 days) was 32 mg L−1 for Graesiella and higher than 75 mg L−1 for Picocystis. Oxidative stress was induced in both strains when exposed to increasing BPA concentrations, as evidenced by increased malondialdehyde content. BPA exposure also resulted in an over-expression of antioxidant activities (ascorbate peroxidase, glutathione S-transferase and catalase) in Picocystis whereas they were repressed in Graesiella. Both species exhibited high BPA removal efficiency, reaching 72% for Picocystis and 52.6% for Graesiella at 25 mg L−1. BPA removal was mostly attributed to biodegradation for both species. Overall, according to its extended tolerance and its removal capacity, Picocystis appeared to be a promising species for the BPA bioremediation even at high contamination levels. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Applied Phycology Springer Journals

Effect and removal of bisphenol A by two extremophilic microalgal strains (Chlorophyta)

Loading next page...
 
/lp/springer_journal/effect-and-removal-of-bisphenol-a-by-two-extremophilic-microalgal-RCZPnIMm7u
Publisher
Springer Netherlands
Copyright
Copyright © 2018 by Springer Science+Business Media B.V., part of Springer Nature
Subject
Life Sciences; Plant Sciences; Freshwater & Marine Ecology; Plant Physiology; Ecology
ISSN
0921-8971
eISSN
1573-5176
D.O.I.
10.1007/s10811-017-1386-x
Publisher site
See Article on Publisher Site

Abstract

The effects and the removal efficiency of bisphenol A (BPA) on two extremophilic Chlorophyta strains, an alkaliphilic Picocystis and a thermophilic Graesiella, were assessed. BPA was shown to inhibit the growth and photosynthesis of both species, but to a greater extent for Graesiella. The growth IC50 (4 days) was 32 mg L−1 for Graesiella and higher than 75 mg L−1 for Picocystis. Oxidative stress was induced in both strains when exposed to increasing BPA concentrations, as evidenced by increased malondialdehyde content. BPA exposure also resulted in an over-expression of antioxidant activities (ascorbate peroxidase, glutathione S-transferase and catalase) in Picocystis whereas they were repressed in Graesiella. Both species exhibited high BPA removal efficiency, reaching 72% for Picocystis and 52.6% for Graesiella at 25 mg L−1. BPA removal was mostly attributed to biodegradation for both species. Overall, according to its extended tolerance and its removal capacity, Picocystis appeared to be a promising species for the BPA bioremediation even at high contamination levels.

Journal

Journal of Applied PhycologySpringer Journals

Published: Jan 8, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off