Effect and Aftereffect of Temperature on Respiration of Intact Plants

Effect and Aftereffect of Temperature on Respiration of Intact Plants Effects and aftereffects of typical temperatures of cultivar habitat (background temperature), heat-hardening, and cold-hardening temperatures on dark respiration of leaf segments and intact plants were investigated on plant species differing in cold tolerance—cucumber (Cucumis sativus L.), tomato (Lycopersicon esculentum Mill.), cicer milkvetch (Astragalus cicer L.), and narrow-leaved lupine (Lupinus angustifolium L.). At cold-hardening temperatures, the respiratory metabolism underwent rearrangements serving to compensate for elevated energy losses during plant adaptation. This was manifested in the increase in the respiratory coefficient (RC) and the Q 10 coefficient during hardening. The preconditioning of plants at hardening temperatures enhanced O2 uptake and elevated the ratio of growth respiration to maintenance respiration in the post-treatment period. Conversely, temperature variations within the background range had no aftereffect on RC, Q 10, and O2 uptake. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Effect and Aftereffect of Temperature on Respiration of Intact Plants

Loading next page...
 
/lp/springer_journal/effect-and-aftereffect-of-temperature-on-respiration-of-intact-plants-15ZMhpLlBP
Publisher
Springer Journals
Copyright
Copyright © 2003 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1023/A:1023809901355
Publisher site
See Article on Publisher Site

Abstract

Effects and aftereffects of typical temperatures of cultivar habitat (background temperature), heat-hardening, and cold-hardening temperatures on dark respiration of leaf segments and intact plants were investigated on plant species differing in cold tolerance—cucumber (Cucumis sativus L.), tomato (Lycopersicon esculentum Mill.), cicer milkvetch (Astragalus cicer L.), and narrow-leaved lupine (Lupinus angustifolium L.). At cold-hardening temperatures, the respiratory metabolism underwent rearrangements serving to compensate for elevated energy losses during plant adaptation. This was manifested in the increase in the respiratory coefficient (RC) and the Q 10 coefficient during hardening. The preconditioning of plants at hardening temperatures enhanced O2 uptake and elevated the ratio of growth respiration to maintenance respiration in the post-treatment period. Conversely, temperature variations within the background range had no aftereffect on RC, Q 10, and O2 uptake.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Oct 17, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off