Edge node buffer usage in optical burst switching networks

Edge node buffer usage in optical burst switching networks Optical Burst Switching (OBS) combines the benefits of Optical Packet Switching and Optical Circuit Switching technologies to provide an efficient, yet cost effective, method for data transmission in an all-optical, bufferless, core network. While most studies on OBS has concentrated on the core OBS network, we contribute new studies for the buffer requirement of an OBS edge node. The buffer usage for OBS systems only arises in the edge nodes since they contain an array of assemblers which combines electronic data with a common destination into an OBS burst stream for transmission in an all-optical bufferless core network. Specifically, we present two analytical results for buffer usage in an OBS edge node: one for Poisson traffic and the other for self-similar traffic input. The results show that the aggregated traffic from many assemblers inherits the characteristics of the source input traffic. This means that the output traffic approaches Poisson if the input traffic is Poisson, and the output traffic remains self-similar if the input is self-similar. These results lead to the following important design issues when dimensioning buffer requirements in an OBS edge node: if the traffic input is Poisson, the M/G/m model is the model to use for obtaining the upper bound on buffer usage in an OBS edge node; and for the case of self-similar traffic, Brichet’s method can be used to provide the upper and lower bound. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

Edge node buffer usage in optical burst switching networks

Loading next page...
Kluwer Academic Publishers-Plenum Publishers
Copyright © 2006 by Springer Science+Business Media, LLC
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
Publisher site
See Article on Publisher Site


  • Optical burst switching (OBS) – a new paradigm for an optical Internet
    Qiao, C.; Yoo, M.

You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial