Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

ED50 AP Block Predictions for Phenyl Substituted and Unsubstituted n-Alkanols

ED50 AP Block Predictions for Phenyl Substituted and Unsubstituted n-Alkanols A series of n-alkanols and phenyl-substituted n-alkanols (Φ-alkanols) of increasing chain length and phenol were characterized for their ability to block action potentials (APs) in frog sciatic nerves. APs were recorded using the single sucrose-gap method. The degree of AP attenuation when the nerve was exposed to different concentrations of an alcohol was used to construct dose-response curves. The reciprocals of the half-blocking doses (ED50s) were used to obtain a measure of the potency of the alcohols. For n-alkanols and Φ-alkanols, increasing the chain length by the addition of a methylene group increased the potency on average by 3.1 for both groups of alkanols. The addition of a phenyl group caused a potency increase that ranged between the values of 77 and 122. The ED50 for both groups of alkanols could not be solely predicted by the log octanol-water partition coefficient (K OW ). Using linear solvation energy relations (LSER), the log ED50 could be described as a linear combination of the intrinsic (van der Waals) molar volume (V I ), polarity (P), and hydrogen bond acceptor basicity (β) and donor acidity (α). Size alone could not predict the ED50 for both n-alkanols and Φ-alkanols. The results are consistent with the hypothesis that alkanols bind to and interact with Na channels to cause AP block. Phenyl group addition to an alkanol markedly increases the molecule's potency. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

ED50 AP Block Predictions for Phenyl Substituted and Unsubstituted n-Alkanols

The Journal of Membrane Biology , Volume 180 (2) – Mar 15, 2001

Loading next page...
 
/lp/springer_journal/ed50-ap-block-predictions-for-phenyl-substituted-and-unsubstituted-n-GyBjzrbX3f

References (2)

Publisher
Springer Journals
Copyright
Copyright © Inc. by 2001 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
DOI
10.1007/s002320010065
Publisher site
See Article on Publisher Site

Abstract

A series of n-alkanols and phenyl-substituted n-alkanols (Φ-alkanols) of increasing chain length and phenol were characterized for their ability to block action potentials (APs) in frog sciatic nerves. APs were recorded using the single sucrose-gap method. The degree of AP attenuation when the nerve was exposed to different concentrations of an alcohol was used to construct dose-response curves. The reciprocals of the half-blocking doses (ED50s) were used to obtain a measure of the potency of the alcohols. For n-alkanols and Φ-alkanols, increasing the chain length by the addition of a methylene group increased the potency on average by 3.1 for both groups of alkanols. The addition of a phenyl group caused a potency increase that ranged between the values of 77 and 122. The ED50 for both groups of alkanols could not be solely predicted by the log octanol-water partition coefficient (K OW ). Using linear solvation energy relations (LSER), the log ED50 could be described as a linear combination of the intrinsic (van der Waals) molar volume (V I ), polarity (P), and hydrogen bond acceptor basicity (β) and donor acidity (α). Size alone could not predict the ED50 for both n-alkanols and Φ-alkanols. The results are consistent with the hypothesis that alkanols bind to and interact with Na channels to cause AP block. Phenyl group addition to an alkanol markedly increases the molecule's potency.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Mar 15, 2001

There are no references for this article.