Ectopic expression of CaRLK1 enhances hypoxia tolerance with increasing alanine production in Nicotiana spp.

Ectopic expression of CaRLK1 enhances hypoxia tolerance with increasing alanine production in... In a previous report, the pepper receptor-like kinase 1 (CaRLK1) gene was shown to be responsible for negatively regulating plant cell death caused by pathogens via accumulation of superoxide anions. Here, we examined whether this gene also plays a role in regulating cell death under abiotic stress. The total concentrations of free amino acids in CaRLK1-overexpressed cells (RLKox) increased by twofold compared with those of the wild-type Nicotiana tabacum BY-2 cells. Additionally, alanine and pyruvate concentrations increased by approximately threefold. These accumulations were associated with both the expression levels of the isocitrate lyase (ICL) and malate synthase genes and their specific activities, which were preferentially up-regulated in the RLKox cells. The expression levels of ethylene biosynthetic genes (ACC synthase and ACC oxidase) were suppressed, but those of both the metallothionein and lesion simulating disease 1 genes increased in the RLKox cells during submergence-induced hypoxia. The specific activity of catalase, which is involved in protecting ICL from reactive oxygen species, was also induced threefold in the RLKox cells. The primary roots of the transgenic plants that were exposed to hypoxic conditions grew at similar rates to those in normal conditions. We propose that CaRLK1 maintains a persistent hypoxia-resistant phenotype. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Ectopic expression of CaRLK1 enhances hypoxia tolerance with increasing alanine production in Nicotiana spp.

Loading next page...
 
/lp/springer_journal/ectopic-expression-of-carlk1-enhances-hypoxia-tolerance-with-M5RVZASq0O
Publisher
Springer Netherlands
Copyright
Copyright © 2014 by Springer Science+Business Media Dordrecht
Subject
Life Sciences; Plant Sciences; Biochemistry, general; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-014-0227-4
Publisher site
See Article on Publisher Site

Abstract

In a previous report, the pepper receptor-like kinase 1 (CaRLK1) gene was shown to be responsible for negatively regulating plant cell death caused by pathogens via accumulation of superoxide anions. Here, we examined whether this gene also plays a role in regulating cell death under abiotic stress. The total concentrations of free amino acids in CaRLK1-overexpressed cells (RLKox) increased by twofold compared with those of the wild-type Nicotiana tabacum BY-2 cells. Additionally, alanine and pyruvate concentrations increased by approximately threefold. These accumulations were associated with both the expression levels of the isocitrate lyase (ICL) and malate synthase genes and their specific activities, which were preferentially up-regulated in the RLKox cells. The expression levels of ethylene biosynthetic genes (ACC synthase and ACC oxidase) were suppressed, but those of both the metallothionein and lesion simulating disease 1 genes increased in the RLKox cells during submergence-induced hypoxia. The specific activity of catalase, which is involved in protecting ICL from reactive oxygen species, was also induced threefold in the RLKox cells. The primary roots of the transgenic plants that were exposed to hypoxic conditions grew at similar rates to those in normal conditions. We propose that CaRLK1 maintains a persistent hypoxia-resistant phenotype.

Journal

Plant Molecular BiologySpringer Journals

Published: Jul 17, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off