Ectopic expression of a maize calreticulin mitigates calcium deficiency-like disorders in sCAX1-expressing tobacco and tomato

Ectopic expression of a maize calreticulin mitigates calcium deficiency-like disorders in... Deregulated expression of an Arabidopsis H+/Ca2+ antiporter (sCAX1) in agricultural crops increases total calcium (Ca2+) but may result in yield losses due to Ca2+ deficiency-like symptoms. Here we demonstrate that co-expression of a maize calreticulin (CRT, a Ca2+ binding protein located at endoplasmic reticulum) in sCAX1-expressing tobacco and tomato plants mitigated these adverse effects while maintaining enhanced Ca2+ content. Co-expression of CRT and sCAX1 could alleviate the hypersensitivity to ion imbalance in tobacco plants. Furthermore, blossom-end rot (BER) in tomato may be linked to changes in CAX activity and enhanced CRT expression mitigated BER in sCAX1 expressing lines. These findings suggest that co-expressing Ca2+ transporters and binding proteins at different intracellular compartments can alter the content and distribution of Ca2+ within the plant matrix. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Ectopic expression of a maize calreticulin mitigates calcium deficiency-like disorders in sCAX1-expressing tobacco and tomato

Loading next page...
 
/lp/springer_journal/ectopic-expression-of-a-maize-calreticulin-mitigates-calcium-O9ATzhbSeY
Publisher
Springer Netherlands
Copyright
Copyright © 2012 by Springer Science+Business Media Dordrecht
Subject
Life Sciences; Plant Pathology; Plant Sciences; Biochemistry, general
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-012-9970-6
Publisher site
See Article on Publisher Site

Abstract

Deregulated expression of an Arabidopsis H+/Ca2+ antiporter (sCAX1) in agricultural crops increases total calcium (Ca2+) but may result in yield losses due to Ca2+ deficiency-like symptoms. Here we demonstrate that co-expression of a maize calreticulin (CRT, a Ca2+ binding protein located at endoplasmic reticulum) in sCAX1-expressing tobacco and tomato plants mitigated these adverse effects while maintaining enhanced Ca2+ content. Co-expression of CRT and sCAX1 could alleviate the hypersensitivity to ion imbalance in tobacco plants. Furthermore, blossom-end rot (BER) in tomato may be linked to changes in CAX activity and enhanced CRT expression mitigated BER in sCAX1 expressing lines. These findings suggest that co-expressing Ca2+ transporters and binding proteins at different intracellular compartments can alter the content and distribution of Ca2+ within the plant matrix.

Journal

Plant Molecular BiologySpringer Journals

Published: Sep 25, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off