Economic feasibility of site-specific optical sensing for managing nitrogen fertilizer for growing wheat

Economic feasibility of site-specific optical sensing for managing nitrogen fertilizer for... A site-specific nitrogen fertilizer application system that uses optical reflectance measurements of growing wheat plants to estimate N requirements has been developed. The machine enables unique applications of liquid N fertilizer at a grid level of 0.37 m2. To achieve widespread adoption, the precision application system must be efficient enough to overcome the cost advantage of pre-plant applications of anhydrous ammonia (NH3) relative to top-dress applications of either dry or liquid N sources on growing wheat. The objective of this research is to determine if the system is more profitable than conventional methods. Data from on-farm N fertilizer experiments were collected across three years and nine locations in the Southern Plains of the U.S.A. Net returns were calculated for each of eight treatments. The site-specific precision system was competitive economically, but it was not unambiguously superior to the conventional alternatives because it could not overcome the cost advantage of NH3 pre-plant N sources relative to the cost of applying urea-ammonium nitrate (UAN) during the growing season. The value of the precision system is sensitive to the price of UAN relative to the price of NH3. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

Economic feasibility of site-specific optical sensing for managing nitrogen fertilizer for growing wheat

Loading next page...
 
/lp/springer_journal/economic-feasibility-of-site-specific-optical-sensing-for-managing-jN3tbLhP0F
Publisher
Springer Journals
Copyright
Copyright © 2008 by Springer Science+Business Media, LLC
Subject
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
ISSN
1385-2256
eISSN
1573-1618
D.O.I.
10.1007/s11119-008-9092-y
Publisher site
See Article on Publisher Site

Abstract

A site-specific nitrogen fertilizer application system that uses optical reflectance measurements of growing wheat plants to estimate N requirements has been developed. The machine enables unique applications of liquid N fertilizer at a grid level of 0.37 m2. To achieve widespread adoption, the precision application system must be efficient enough to overcome the cost advantage of pre-plant applications of anhydrous ammonia (NH3) relative to top-dress applications of either dry or liquid N sources on growing wheat. The objective of this research is to determine if the system is more profitable than conventional methods. Data from on-farm N fertilizer experiments were collected across three years and nine locations in the Southern Plains of the U.S.A. Net returns were calculated for each of eight treatments. The site-specific precision system was competitive economically, but it was not unambiguously superior to the conventional alternatives because it could not overcome the cost advantage of NH3 pre-plant N sources relative to the cost of applying urea-ammonium nitrate (UAN) during the growing season. The value of the precision system is sensitive to the price of UAN relative to the price of NH3.

Journal

Precision AgricultureSpringer Journals

Published: Nov 9, 2008

References

  • In-field assessment of single leaf nitrogen status by spectral reflectance measurement
    Alchanatis, V; Scmilovitch, Z; Meron, M

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off