Economic and Environmental Evaluation of Variable Rate Nitrogen and Lime Application for Claypan Soil Fields

Economic and Environmental Evaluation of Variable Rate Nitrogen and Lime Application for Claypan... Variable Rate Technology (VRT) has the potential to increase crop yields and improve water quality relative to Uniform Rate Technology (URT). The effects on profitability and water quality of adopting VRT for nitrogen (N) and lime were evaluated for corn production on four claypan soil fields in north central Missouri under average to better than average weather conditions. Variable N and lime rates were based on measured topsoil depth and soil pH, respectively. VRT rates were compared to two different uniform N applications (URT-Nl based on the topsoil depth within these claypan soil fields, and URT-N2 based on a typical N rate for corn production in this area). Expected corn yield was predicted based on topsoil depth, soil pH, N rate, and lime rate. Water quality benefits of VRT relative to URT were evaluated based on potential leachable N. Sensitivity analyses were performed using simulated topsoil data for topsoil depth and soil pH. Results showed that VRT was more profitable than URT in the four sample fields under URT-N1, and in two of the four fields under URT-N2. Greater variation in topsoil depth and soil pH resulted in higher profitability and greater water quality benefits with VRT. Results support adoption of VRT for N and lime application for other claypan soil fields with characteristics similar to those in the fields used in this study. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

Economic and Environmental Evaluation of Variable Rate Nitrogen and Lime Application for Claypan Soil Fields

Loading next page...
 
/lp/springer_journal/economic-and-environmental-evaluation-of-variable-rate-nitrogen-and-FWsB8AWFCz
Publisher
Springer Journals
Copyright
Copyright © 2003 by Kluwer Academic Publishers
Subject
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
ISSN
1385-2256
eISSN
1573-1618
D.O.I.
10.1023/A:1021858921307
Publisher site
See Article on Publisher Site

Abstract

Variable Rate Technology (VRT) has the potential to increase crop yields and improve water quality relative to Uniform Rate Technology (URT). The effects on profitability and water quality of adopting VRT for nitrogen (N) and lime were evaluated for corn production on four claypan soil fields in north central Missouri under average to better than average weather conditions. Variable N and lime rates were based on measured topsoil depth and soil pH, respectively. VRT rates were compared to two different uniform N applications (URT-Nl based on the topsoil depth within these claypan soil fields, and URT-N2 based on a typical N rate for corn production in this area). Expected corn yield was predicted based on topsoil depth, soil pH, N rate, and lime rate. Water quality benefits of VRT relative to URT were evaluated based on potential leachable N. Sensitivity analyses were performed using simulated topsoil data for topsoil depth and soil pH. Results showed that VRT was more profitable than URT in the four sample fields under URT-N1, and in two of the four fields under URT-N2. Greater variation in topsoil depth and soil pH resulted in higher profitability and greater water quality benefits with VRT. Results support adoption of VRT for N and lime application for other claypan soil fields with characteristics similar to those in the fields used in this study.

Journal

Precision AgricultureSpringer Journals

Published: Oct 3, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off