Ecology of fishes in a high-latitude, turbid river with implications for the impacts of hydrokinetic devices

Ecology of fishes in a high-latitude, turbid river with implications for the impacts of... Hydrokinetic devices generate electricity by capturing kinetic energy from flowing water as it moves across or through a rotor, without impounding or diverting the water source. The Tanana River in Alaska, a turbid glacial system, has been selected as a pilot location to evaluate the effects of such a device on fish communities that are highly valued by subsistence, sport, and commercial users. The basic ecology and habitat use of fishes in turbid glacial systems are poorly understood; therefore it is necessary to study the species composition of the fish community and the spatial and temporal patterns of mainstem river use by these fishes to evaluate impacts of a hydrokinetic device. In this document, we provide an overview of existing knowledge of fish ecology in the Tanana River and impacts of hydrokinetic devices on fishes in other river systems. Seventeen fish species are known to inhabit the Tanana River and several may utilize the deepest and fastest section of the channel, the probable deployment location for the hydrokinetic device, as a seasonal migration corridor. Previous studies in clearwater river systems indicate that mortality and injury rates from turbine passage are low. However, the results from these studies may not apply to the Tanana River because of its distinctive physical properties. To rectify this shortcoming, a conceptual framework for a comprehensive fish ecology study is recommended to determine the impacts of hydrokinetic devices on fishes in turbid, glacial rivers. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Reviews in Fish Biology and Fisheries Springer Journals

Ecology of fishes in a high-latitude, turbid river with implications for the impacts of hydrokinetic devices

Loading next page...
 
/lp/springer_journal/ecology-of-fishes-in-a-high-latitude-turbid-river-with-implications-6JIS9JPkvt
Publisher
Springer Netherlands
Copyright
Copyright © 2011 by Springer Science+Business Media B.V.
Subject
Life Sciences; Zoology; Freshwater & Marine Ecology
ISSN
0960-3166
eISSN
1573-5184
D.O.I.
10.1007/s11160-011-9200-3
Publisher site
See Article on Publisher Site

Abstract

Hydrokinetic devices generate electricity by capturing kinetic energy from flowing water as it moves across or through a rotor, without impounding or diverting the water source. The Tanana River in Alaska, a turbid glacial system, has been selected as a pilot location to evaluate the effects of such a device on fish communities that are highly valued by subsistence, sport, and commercial users. The basic ecology and habitat use of fishes in turbid glacial systems are poorly understood; therefore it is necessary to study the species composition of the fish community and the spatial and temporal patterns of mainstem river use by these fishes to evaluate impacts of a hydrokinetic device. In this document, we provide an overview of existing knowledge of fish ecology in the Tanana River and impacts of hydrokinetic devices on fishes in other river systems. Seventeen fish species are known to inhabit the Tanana River and several may utilize the deepest and fastest section of the channel, the probable deployment location for the hydrokinetic device, as a seasonal migration corridor. Previous studies in clearwater river systems indicate that mortality and injury rates from turbine passage are low. However, the results from these studies may not apply to the Tanana River because of its distinctive physical properties. To rectify this shortcoming, a conceptual framework for a comprehensive fish ecology study is recommended to determine the impacts of hydrokinetic devices on fishes in turbid, glacial rivers.

Journal

Reviews in Fish Biology and FisheriesSpringer Journals

Published: Feb 2, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off