Ecological effects of longline fishing and climate change on the pelagic ecosystem off eastern Australia

Ecological effects of longline fishing and climate change on the pelagic ecosystem off eastern... Pelagic longline fisheries target (or catch incidently) large apex predators in the open ocean (e.g. tunas, billfish and sharks) and have the potential to disrupt the ecosystem functionality if these predators exert strong top–down control. In contrast, warming of oceans from climate change may increase bottom–up effects from increases in primary productivity. An ecosystem model of a large pelagic ecosystem off eastern Australia was constructed to explore the potential ecological effects of climate change and longlining by Australia’s Eastern Tuna and Billfish Fishery. The model reproduced historic biomass and fishery catch trends from 1952 to 2006 for seven functional groups. Simulated changes in fishing effort and fishing mortality rate on individual target species from 2008 to 2018 resulted in only modest (<20%) changes in the biomass of target species and their direct predators or competitors. A simulated increase in phytoplankton biomass due to climate change resulted in only small increases (<11%) in the biomass of all groups. However, climate-related changes to the biomass of micronekton fish (−20%) and cephalopods (+50%) resulted in trophic cascades. Our results suggest there may be ecological redundancy among high trophic level predators since they share a diverse suite of prey and collectively only represent <1% of the total system biomass. In contrast, micronekton fishes and cephalopods have high biomasses and high production and consumption rates and are important as both prey and predators. They appear to exert ‘wasp–waist’ control of the ecosystem rather than top–down or bottom–up processes reported to drive other pelagic systems. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Reviews in Fish Biology and Fisheries Springer Journals

Ecological effects of longline fishing and climate change on the pelagic ecosystem off eastern Australia

Loading next page...
 
/lp/springer_journal/ecological-effects-of-longline-fishing-and-climate-change-on-the-TmK5wZVE84
Publisher
Springer Netherlands
Copyright
Copyright © 2010 by Springer Science+Business Media B.V.
Subject
Life Sciences; Zoology ; Freshwater & Marine Ecology
ISSN
0960-3166
eISSN
1573-5184
D.O.I.
10.1007/s11160-009-9157-7
Publisher site
See Article on Publisher Site

Abstract

Pelagic longline fisheries target (or catch incidently) large apex predators in the open ocean (e.g. tunas, billfish and sharks) and have the potential to disrupt the ecosystem functionality if these predators exert strong top–down control. In contrast, warming of oceans from climate change may increase bottom–up effects from increases in primary productivity. An ecosystem model of a large pelagic ecosystem off eastern Australia was constructed to explore the potential ecological effects of climate change and longlining by Australia’s Eastern Tuna and Billfish Fishery. The model reproduced historic biomass and fishery catch trends from 1952 to 2006 for seven functional groups. Simulated changes in fishing effort and fishing mortality rate on individual target species from 2008 to 2018 resulted in only modest (<20%) changes in the biomass of target species and their direct predators or competitors. A simulated increase in phytoplankton biomass due to climate change resulted in only small increases (<11%) in the biomass of all groups. However, climate-related changes to the biomass of micronekton fish (−20%) and cephalopods (+50%) resulted in trophic cascades. Our results suggest there may be ecological redundancy among high trophic level predators since they share a diverse suite of prey and collectively only represent <1% of the total system biomass. In contrast, micronekton fishes and cephalopods have high biomasses and high production and consumption rates and are important as both prey and predators. They appear to exert ‘wasp–waist’ control of the ecosystem rather than top–down or bottom–up processes reported to drive other pelagic systems.

Journal

Reviews in Fish Biology and FisheriesSpringer Journals

Published: Jan 21, 2010

References

  • Age and growth of the scalloped hammerhead shark, Sphyrna lewini, in the north-west Atlantic Ocean and Gulf of Mexico
    Andrew, N; Piercy, AC; John, K; Carlson, B; James, A; Sulikowski, A; Burgess, GH

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off