Earthquake recurrence models and occurrence probabilities of strong earthquakes in the North Aegean Trough (Greece)

Earthquake recurrence models and occurrence probabilities of strong earthquakes in the North... The determination of strong earthquakes’ recurrence time above a predefined magnitude, associated with specific fault segments, is an important component of seismic hazard assessment. The occurrence of these earthquakes is neither periodic nor completely random but often clustered in time. This fact in connection with their limited number, due to shortage of the available catalogs, inhibits a deterministic approach for recurrence time calculation, and for this reason, application of stochastic processes is required. In this study, recurrence time determination in the area of North Aegean Trough (NAT) is developed by the application of time-dependent stochastic models, introducing an elastic rebound motivated concept for individual fault segments located in the study area. For this purpose, all the available information on strong earthquakes (historical and instrumental) with M w ≥ 6.5 is compiled and examined for magnitude completeness. Two possible starting dates of the catalog are assumed with the same magnitude threshold, M w ≥ 6.5 and divided into five data sets, according to a new segmentation model for the study area. Three Brownian Passage Time (BPT) models with different levels of aperiodicity are applied and evaluated with the Anderson–Darling test for each segment in both catalog data where possible. The preferable models are then used in order to estimate the occurrence probabilities of M w ≥ 6.5 shocks on each segment of NAT for the next 10, 20, and 30 years since 01/01/2016. Uncertainties in probability calculations are also estimated using a Monte Carlo procedure. It must be mentioned that the provided results should be treated carefully because of their dependence to the initial assumptions. Such assumptions exhibit large variability and alternative means of these may return different final results. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Seismology Springer Journals

Earthquake recurrence models and occurrence probabilities of strong earthquakes in the North Aegean Trough (Greece)

Loading next page...
 
/lp/springer_journal/earthquake-recurrence-models-and-occurrence-probabilities-of-strong-p5d8R9PMXs
Publisher
Springer Netherlands
Copyright
Copyright © 2018 by Springer Science+Business Media B.V., part of Springer Nature
Subject
Earth Sciences; Geophysics/Geodesy; Structural Geology; Hydrogeology; Geotechnical Engineering & Applied Earth Sciences
ISSN
1383-4649
eISSN
1573-157X
D.O.I.
10.1007/s10950-018-9763-8
Publisher site
See Article on Publisher Site

Abstract

The determination of strong earthquakes’ recurrence time above a predefined magnitude, associated with specific fault segments, is an important component of seismic hazard assessment. The occurrence of these earthquakes is neither periodic nor completely random but often clustered in time. This fact in connection with their limited number, due to shortage of the available catalogs, inhibits a deterministic approach for recurrence time calculation, and for this reason, application of stochastic processes is required. In this study, recurrence time determination in the area of North Aegean Trough (NAT) is developed by the application of time-dependent stochastic models, introducing an elastic rebound motivated concept for individual fault segments located in the study area. For this purpose, all the available information on strong earthquakes (historical and instrumental) with M w ≥ 6.5 is compiled and examined for magnitude completeness. Two possible starting dates of the catalog are assumed with the same magnitude threshold, M w ≥ 6.5 and divided into five data sets, according to a new segmentation model for the study area. Three Brownian Passage Time (BPT) models with different levels of aperiodicity are applied and evaluated with the Anderson–Darling test for each segment in both catalog data where possible. The preferable models are then used in order to estimate the occurrence probabilities of M w ≥ 6.5 shocks on each segment of NAT for the next 10, 20, and 30 years since 01/01/2016. Uncertainties in probability calculations are also estimated using a Monte Carlo procedure. It must be mentioned that the provided results should be treated carefully because of their dependence to the initial assumptions. Such assumptions exhibit large variability and alternative means of these may return different final results.

Journal

Journal of SeismologySpringer Journals

Published: Jun 4, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off