Early pathogen detection under different water status and the assessment of spray application in vineyards through the use of thermal imagery

Early pathogen detection under different water status and the assessment of spray application in... Remote detection using thermal imagery has potential for use in the pre-symptomatic diagnosis of abiotic stress or of early disease detection. The latter is an issue of great importance since late detection of fungus attacks or poor spray coverage are major factors contributing to weak disease control affecting fruit quality or reducing yield in grapes. In greenhouse experiments the effects on spatial and temporal variability of leaf temperature of grapevine (Vitis vinifera L. cv. Riesling) leaves inoculated with a fungal pathogen (Plasmopara viticola (Berk. & Curt. Ex de Bary) were studied in either well-irrigated or non-irrigated potted plants. Due to the high sensitivity of leaf temperature to the amount of water transpired, infra-red thermography can be used to monitor irregularities in temperature at an early stage of pathogen development. Evidence for characteristic thermal responses in grapevines was apparent well before visible symptoms appeared. Contrasting thermal effects due to the pathogen attack were found between measurements on well-irrigated and water-stressed plants. Furthermore, from a technical point of view, thermal imagery has the potential to assess the evenness of spray coverage within a canopy, hence optimizing pesticide application efficiency. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

Early pathogen detection under different water status and the assessment of spray application in vineyards through the use of thermal imagery

Loading next page...
 
/lp/springer_journal/early-pathogen-detection-under-different-water-status-and-the-kjmXVdntxX
Publisher
Springer US
Copyright
Copyright © 2008 by Springer Science+Business Media, LLC
Subject
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
ISSN
1385-2256
eISSN
1573-1618
D.O.I.
10.1007/s11119-008-9084-y
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial