Early genes responsive to abscisic acid during heterophyllous induction in Marsilea quadrifolia

Early genes responsive to abscisic acid during heterophyllous induction in Marsilea quadrifolia The aquatic fern Marsilea quadrifolia produces different types of leaves in response to changes in natural environment and culture conditions. When the conditions are in favor of producing the submerged-type leaves, exogenous application of the plant hormone abscisic acid (ABA) induces the formation of aerial-type leaves. Tissues responsive to ABA were localized to the shoot apical meristem and the associated organ primordia. From these tissues, at least two tiers of ABA-regulated early genes were identified, including seven primary genes and seventeen secondary genes. These genes, designated ABRH for ABA-responsive heterophylly, showed diverse expression patterns during the course of heterophyllous induction. Changes in the transcript level of ABRH genes started early, within 0.5–1.0 h after the addition of ABA to the culture medium. Some changes were transient while the others were persistent. The ABRHs contain extensive sequence homology to known genes, including those encoding transcription factors, protein kinases, membrane transporters, metabolic enzymes, structural proteins and those encoded by the chloroplast genome. Identification of these ABRHs is a first step toward the understanding of the regulation mechanisms of heterophylly, and the results suggest the involvement of novel metabolic and regulatory pathways in ABA-controlled morphogenesis. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Early genes responsive to abscisic acid during heterophyllous induction in Marsilea quadrifolia

Loading next page...
 
/lp/springer_journal/early-genes-responsive-to-abscisic-acid-during-heterophyllous-YmdwFzGSBG
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2001 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1013612331583
Publisher site
See Article on Publisher Site

Abstract

The aquatic fern Marsilea quadrifolia produces different types of leaves in response to changes in natural environment and culture conditions. When the conditions are in favor of producing the submerged-type leaves, exogenous application of the plant hormone abscisic acid (ABA) induces the formation of aerial-type leaves. Tissues responsive to ABA were localized to the shoot apical meristem and the associated organ primordia. From these tissues, at least two tiers of ABA-regulated early genes were identified, including seven primary genes and seventeen secondary genes. These genes, designated ABRH for ABA-responsive heterophylly, showed diverse expression patterns during the course of heterophyllous induction. Changes in the transcript level of ABRH genes started early, within 0.5–1.0 h after the addition of ABA to the culture medium. Some changes were transient while the others were persistent. The ABRHs contain extensive sequence homology to known genes, including those encoding transcription factors, protein kinases, membrane transporters, metabolic enzymes, structural proteins and those encoded by the chloroplast genome. Identification of these ABRHs is a first step toward the understanding of the regulation mechanisms of heterophylly, and the results suggest the involvement of novel metabolic and regulatory pathways in ABA-controlled morphogenesis.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 3, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off