Early evolution of the MFT-like gene family in plants

Early evolution of the MFT-like gene family in plants Angiosperm genes sharing a conserved phosphatidylethanolamine-binding (PEPB) domain have been shown to be involved in the control of shoot meristem identity and flowering time. The family is divided into three subfamilies, FT-like, TFL1-like and MFT-like. This study is focused on the evolution of the MFT-like clade, suggested to be ancestral to the two other clades. We report that the bryophyte Physcomitrella patens and the lycopod Selaginella moellendorfii contain four and two MFT-like genes respectively. Neither species have any FT or TFL1-like genes. Furthermore, we have identified a new subclade of MFT-like genes in Angiosperms. Quantitative expression analysis of MFT-like genes in Physcomitrella patens reveals that the expression patterns are circadian and reaches maximum in gametangia and sporophytes. Our data suggest that the occurrence FT and TFL1-like genes, is associated with the evolution of seed plants. Expression data for Physcomitrella MFT-like genes implicates an involvement in the development of reproductive tissues in the moss. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Early evolution of the MFT-like gene family in plants

Loading next page...
 
/lp/springer_journal/early-evolution-of-the-mft-like-gene-family-in-plants-x3pUndU0Am
Publisher
Springer Netherlands
Copyright
Copyright © 2009 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-009-9478-x
Publisher site
See Article on Publisher Site

Abstract

Angiosperm genes sharing a conserved phosphatidylethanolamine-binding (PEPB) domain have been shown to be involved in the control of shoot meristem identity and flowering time. The family is divided into three subfamilies, FT-like, TFL1-like and MFT-like. This study is focused on the evolution of the MFT-like clade, suggested to be ancestral to the two other clades. We report that the bryophyte Physcomitrella patens and the lycopod Selaginella moellendorfii contain four and two MFT-like genes respectively. Neither species have any FT or TFL1-like genes. Furthermore, we have identified a new subclade of MFT-like genes in Angiosperms. Quantitative expression analysis of MFT-like genes in Physcomitrella patens reveals that the expression patterns are circadian and reaches maximum in gametangia and sporophytes. Our data suggest that the occurrence FT and TFL1-like genes, is associated with the evolution of seed plants. Expression data for Physcomitrella MFT-like genes implicates an involvement in the development of reproductive tissues in the moss.

Journal

Plant Molecular BiologySpringer Journals

Published: Mar 14, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off