Early Detection of Preeclampsia Using Circulating Small non-coding RNA

Early Detection of Preeclampsia Using Circulating Small non-coding RNA Preeclampsia is one of the most dangerous pregnancy complications, and the leading cause of maternal and perinatal mortality and morbidity. Although the clinical symptoms appear late, its origin is early, and hence detection is feasible already at the first trimester. In the current study, we investigated the abundance of circulating small non-coding RNAs in the plasma of pregnant women in their first trimester, seeking transcripts that best separate the preeclampsia samples from those of healthy pregnant women. To this end, we performed small non-coding RNAs sequencing of 75 preeclampsia and control samples, and identified 25 transcripts that were differentially expressed between preeclampsia and the control groups. Furthermore, we utilized those transcripts and created a pipeline for a supervised classification of preeclampsia. Our pipeline generates a logistic regression model using a 5-fold cross validation on numerous random partitions into training and blind test sets. Using this classification procedure, we achieved an average AUC value of 0.86. These findings suggest the predictive value of circulating small non-coding RNA in the first trimester, warranting further examination, and lay the foundation for producing a novel early non-invasive diagnostic tool for preeclampsia, which could reduce the life-threatening risk for both the mother and fetus. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Scientific Reports Springer Journals

Early Detection of Preeclampsia Using Circulating Small non-coding RNA

Loading next page...
 
/lp/springer_journal/early-detection-of-preeclampsia-using-circulating-small-non-coding-rna-445gmIa0Fb
Publisher
Springer Journals
Copyright
Copyright © 2018 by The Author(s)
Subject
Science, Humanities and Social Sciences, multidisciplinary; Science, Humanities and Social Sciences, multidisciplinary; Science, multidisciplinary
eISSN
2045-2322
D.O.I.
10.1038/s41598-018-21604-6
Publisher site
See Article on Publisher Site

Abstract

Preeclampsia is one of the most dangerous pregnancy complications, and the leading cause of maternal and perinatal mortality and morbidity. Although the clinical symptoms appear late, its origin is early, and hence detection is feasible already at the first trimester. In the current study, we investigated the abundance of circulating small non-coding RNAs in the plasma of pregnant women in their first trimester, seeking transcripts that best separate the preeclampsia samples from those of healthy pregnant women. To this end, we performed small non-coding RNAs sequencing of 75 preeclampsia and control samples, and identified 25 transcripts that were differentially expressed between preeclampsia and the control groups. Furthermore, we utilized those transcripts and created a pipeline for a supervised classification of preeclampsia. Our pipeline generates a logistic regression model using a 5-fold cross validation on numerous random partitions into training and blind test sets. Using this classification procedure, we achieved an average AUC value of 0.86. These findings suggest the predictive value of circulating small non-coding RNA in the first trimester, warranting further examination, and lay the foundation for producing a novel early non-invasive diagnostic tool for preeclampsia, which could reduce the life-threatening risk for both the mother and fetus.

Journal

Scientific ReportsSpringer Journals

Published: Feb 21, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off