E7 proteins from high- and low-risk human papillomaviruses bind to TGF-β-regulated Smad proteins and inhibit their transcriptional activity

E7 proteins from high- and low-risk human papillomaviruses bind to TGF-β-regulated Smad proteins... Human papillomaviruses (HPV) infect keratinocytes of skin and mucosa. Persistent infection can lead to the formation of benign tumors. In cases of high-risk HPV, such as HPV16 or 18, these may further progress to cancer. In order to support viral replication in suprabasal keratinocytes, the HPV E7 protein employs various strategies to keep keratinocytes in cycle and counteracts anti-proliferative signals from outside. HPV16 E7 can directly interfere with transforming growth factor-β (TGF-β) signalling by binding to Smad proteins mediating growth arrest. It has been speculated that this property of HPV16 E7 contributes to HPV-associated carcinogenesis. Here, we show that E7 proteins from different low- and high-risk HPV types bind to Smad 1 to 4. The E7 protein from HPV1, a low-risk HPV causing plantar warts, efficiently inhibited Smad 3-induced transcription. Our data strongly indicate that the Smad-binding capacity of E7 proteins from different HPVs may preserve keratinocyte proliferation required for the productive viral life cycle rather than promoting carcinogenesis. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

E7 proteins from high- and low-risk human papillomaviruses bind to TGF-β-regulated Smad proteins and inhibit their transcriptional activity

Loading next page...
 
/lp/springer_journal/e7-proteins-from-high-and-low-risk-human-papillomaviruses-bind-to-tgf-lJs0tvOyur
Publisher
Springer Journals
Copyright
Copyright © 2006 by Springer-Verlag
Subject
Biomedicine; Medical Microbiology; Virology; Infectious Diseases
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-006-0768-1
Publisher site
See Article on Publisher Site

Abstract

Human papillomaviruses (HPV) infect keratinocytes of skin and mucosa. Persistent infection can lead to the formation of benign tumors. In cases of high-risk HPV, such as HPV16 or 18, these may further progress to cancer. In order to support viral replication in suprabasal keratinocytes, the HPV E7 protein employs various strategies to keep keratinocytes in cycle and counteracts anti-proliferative signals from outside. HPV16 E7 can directly interfere with transforming growth factor-β (TGF-β) signalling by binding to Smad proteins mediating growth arrest. It has been speculated that this property of HPV16 E7 contributes to HPV-associated carcinogenesis. Here, we show that E7 proteins from different low- and high-risk HPV types bind to Smad 1 to 4. The E7 protein from HPV1, a low-risk HPV causing plantar warts, efficiently inhibited Smad 3-induced transcription. Our data strongly indicate that the Smad-binding capacity of E7 proteins from different HPVs may preserve keratinocyte proliferation required for the productive viral life cycle rather than promoting carcinogenesis.

Journal

Archives of VirologySpringer Journals

Published: Oct 1, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off