Dzyaloshinskii–Moriya interaction as an agent to free the bound entangled states

Dzyaloshinskii–Moriya interaction as an agent to free the bound entangled states In the present paper, we investigate the efficacy of Dzyaloshinskii–Moriya (DM) interaction to convert the bound entangled states into free entangled states. We consider the tripartite hybrid system as a pair of non interacting two qutrits initially prepared in bound entangled states and one auxiliary qubit. Here, we consider two types of bound entangled states investigated by Horodecki. The auxiliary qubit interacts with any one of the qutrit of the pair through DM interaction. We show that by tuning the probability amplitude of auxiliary qubit and DM interaction strength, one can free the bound entangled states, which can be further distilled. We use the reduction criterion to find the range of the parameters of probability amplitude of auxiliary qubit and DM interaction strength, for which the states are distillable. The realignment criterion and negativity have been used for detection and quantification of entanglement. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Dzyaloshinskii–Moriya interaction as an agent to free the bound entangled states

Loading next page...
 
/lp/springer_journal/dzyaloshinskii-moriya-interaction-as-an-agent-to-free-the-bound-magbqxTTQP
Publisher
Springer US
Copyright
Copyright © 2016 by Springer Science+Business Media New York
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-015-1234-3
Publisher site
See Article on Publisher Site

Abstract

In the present paper, we investigate the efficacy of Dzyaloshinskii–Moriya (DM) interaction to convert the bound entangled states into free entangled states. We consider the tripartite hybrid system as a pair of non interacting two qutrits initially prepared in bound entangled states and one auxiliary qubit. Here, we consider two types of bound entangled states investigated by Horodecki. The auxiliary qubit interacts with any one of the qutrit of the pair through DM interaction. We show that by tuning the probability amplitude of auxiliary qubit and DM interaction strength, one can free the bound entangled states, which can be further distilled. We use the reduction criterion to find the range of the parameters of probability amplitude of auxiliary qubit and DM interaction strength, for which the states are distillable. The realignment criterion and negativity have been used for detection and quantification of entanglement.

Journal

Quantum Information ProcessingSpringer Journals

Published: Jan 25, 2016

References

  • Can quantum-mechanical description of physical reality be considered complete?
    Einstein, A; Podolsky, B; Rosen, N

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off