Dynein light chain DYNLL1 subunit facilitates porcine circovirus type 2 intracellular transports along microtubules

Dynein light chain DYNLL1 subunit facilitates porcine circovirus type 2 intracellular transports... Microtubule (MT) and dynein motor proteins facilitate intracytoplasmic transport of cellular proteins. Various viruses utilize microtubules and dynein for their movement from the cell periphery to the nucleus. The aim of this study was to investigate the intracellular transport of porcine circovirus type 2 (PCV2) via 8 kDa dynein light chain (DYNLL1, LC8) subunit along the MTs. At 20 μM, vinblastine sulfate inhibited tubulin polymerization resulting in disorganized morphology. In PCV2-infected PK-15 cells, double immunofluorescent labeling showed that the viral particles appeared at the cell periphery and gradually moved to the microtubule organization center (MTOC) at 0−12 hour post inoculation (hpi) while at 20−24 hpi they accumulated in the nucleus. Co-localization between DYNLL1 and PCV2 particles was observed clearly at 8−12 hpi. At 20−24 hpi, most aggregated tubulin had a paracrystalline appearance at the MTOC around the nucleus in vinblastine-treated, PCV2-infected PK-15 cells. Between 12 and 24 hpi, PCV2 particles were still bound to DYNLL1 before they were translocated to the nucleus in both treatments, indicating that vinblastine sulfate had no effect on the protein-protein co-localization. The DYNLL1 binding motif, LRLQT, was found near the C-terminus of PCV2 capsid protein (Cap). Molecular docking analysis confirmed the specific interaction between these residues and the cargo binding site on DYNLL1. Our study clearly demonstrated that dynein, in particular DYNLL1, mediated PCV2 intracellular trafficking. The results could explain, at least in part, the viral transport mechanism by DYNLL1 via MT during PCV2 infection. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

Dynein light chain DYNLL1 subunit facilitates porcine circovirus type 2 intracellular transports along microtubules

Loading next page...
 
/lp/springer_journal/dynein-light-chain-dynll1-subunit-facilitates-porcine-circovirus-type-mg2n5SpogK
Publisher
Springer Journals
Copyright
Copyright © 2016 by Springer-Verlag Wien
Subject
Biomedicine; Virology; Medical Microbiology; Infectious Diseases
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-016-3140-0
Publisher site
See Article on Publisher Site

Abstract

Microtubule (MT) and dynein motor proteins facilitate intracytoplasmic transport of cellular proteins. Various viruses utilize microtubules and dynein for their movement from the cell periphery to the nucleus. The aim of this study was to investigate the intracellular transport of porcine circovirus type 2 (PCV2) via 8 kDa dynein light chain (DYNLL1, LC8) subunit along the MTs. At 20 μM, vinblastine sulfate inhibited tubulin polymerization resulting in disorganized morphology. In PCV2-infected PK-15 cells, double immunofluorescent labeling showed that the viral particles appeared at the cell periphery and gradually moved to the microtubule organization center (MTOC) at 0−12 hour post inoculation (hpi) while at 20−24 hpi they accumulated in the nucleus. Co-localization between DYNLL1 and PCV2 particles was observed clearly at 8−12 hpi. At 20−24 hpi, most aggregated tubulin had a paracrystalline appearance at the MTOC around the nucleus in vinblastine-treated, PCV2-infected PK-15 cells. Between 12 and 24 hpi, PCV2 particles were still bound to DYNLL1 before they were translocated to the nucleus in both treatments, indicating that vinblastine sulfate had no effect on the protein-protein co-localization. The DYNLL1 binding motif, LRLQT, was found near the C-terminus of PCV2 capsid protein (Cap). Molecular docking analysis confirmed the specific interaction between these residues and the cargo binding site on DYNLL1. Our study clearly demonstrated that dynein, in particular DYNLL1, mediated PCV2 intracellular trafficking. The results could explain, at least in part, the viral transport mechanism by DYNLL1 via MT during PCV2 infection.

Journal

Archives of VirologySpringer Journals

Published: Nov 17, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off