Dynamics simulation and reaction pathway analysis of characteristics of soot particles in ethylene oxidation at high temperature

Dynamics simulation and reaction pathway analysis of characteristics of soot particles in... Soot particles characteristics were investigated numerically for high temperature oxidation of C2H4/O2/N2 (C/O ratio of 2.2) in a closed jet-stirred/plug-flow reactor (JSR/PFR) system. Based on the growth mechanism of polycyclic aromatic hydrocarbons (PAHs), two mechanisms were used to explore the formation pathways of soot precursors and soot. Numerical results were compared with the experimental and reference data. The simulation results show that the value predicted for small molecule intermediates within A1 gives a strong regularity, consistent trend with reference data. However, with the hydrogen-abstraction-carbon-addition (HACA) growth mechanism, the predicted value for beyond-A1 PAH macromolecules and soot volume fraction are smaller than the experimental data. The results also show that the predicted soot volume fraction is in good agreement with experimental data when a combination of the HACA and PAHs condensation (HACA + PAH-PAH) growth mechanisms is used. Analyses of the A1 sensitivity and reaction pathway elucidated that A1 are mainly formed from C2H3, C2H2, C3H3, C6H5OH, A1C2H and A1-. The reaction 2C3H3 → A1 is the dominant route of benzene formation. The prediction results and an analysis of the A3 reaction pathway indicate that the growth process from benzene to larger aromatic hydrocarbons (beyond two-ring polycyclic aromatic hydrocarbons [PAHs]) goes by two pathways, i.e., HACA combined with the PAH-PAH radical recombination and addition reaction growth mechanisms. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Applied Chemistry Springer Journals

Dynamics simulation and reaction pathway analysis of characteristics of soot particles in ethylene oxidation at high temperature

Loading next page...
Pleiades Publishing
Copyright © 2014 by Pleiades Publishing, Ltd.
Chemistry; Chemistry/Food Science, general; Industrial Chemistry/Chemical Engineering
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial