Dynamics of the Plasma Membrane Proton Pump

Dynamics of the Plasma Membrane Proton Pump Proton transfer over distances longer than that of a hydrogen bond often requires water molecules and protein motions. Following transfer of the proton from the donor to the acceptor, the change in the charge distribution may alter the dynamics of protein and water. To begin to understand how protonation dynamics couple to protein and water dynamics, here we explore how changes in the protonation state affect water and protein dynamics in the AHA2 proton pump. We find that the protonation state of the proton donor and acceptor groups largely affects the dynamics of internal waters and of specific hydrogen bonds, and the orientation of transmembrane helical segments that couple remote regions of the protein. The primary proton donor/acceptor group D684, can interact with water molecules from the cytoplasmic bulk and/or other protein groups. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Dynamics of the Plasma Membrane Proton Pump

Loading next page...
 
/lp/springer_journal/dynamics-of-the-plasma-membrane-proton-pump-P0GB013fkj
Publisher
Springer US
Copyright
Copyright © 2014 by Springer Science+Business Media New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-014-9732-2
Publisher site
See Article on Publisher Site

Abstract

Proton transfer over distances longer than that of a hydrogen bond often requires water molecules and protein motions. Following transfer of the proton from the donor to the acceptor, the change in the charge distribution may alter the dynamics of protein and water. To begin to understand how protonation dynamics couple to protein and water dynamics, here we explore how changes in the protonation state affect water and protein dynamics in the AHA2 proton pump. We find that the protonation state of the proton donor and acceptor groups largely affects the dynamics of internal waters and of specific hydrogen bonds, and the orientation of transmembrane helical segments that couple remote regions of the protein. The primary proton donor/acceptor group D684, can interact with water molecules from the cytoplasmic bulk and/or other protein groups.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Oct 2, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off