Dynamics of quantum correlation for a qubit–qutrit system in the presence of the dephasing environments

Dynamics of quantum correlation for a qubit–qutrit system in the presence of the dephasing... We analytically study the dynamic behaviors of quantum correlation measured by three kinds of measures including quantum discord (QD), geometric quantum discord (GQD) and one-norm GQD for a qubit–qutrit system under the influence of dephasing environments with Ohmic-like spectral densities at nonzero temperature. It is shown that the similar evolution behaviors may be obtained for sub-Ohmic and Ohmic reservoirs. By properly choosing the system’s initial states and reservoir temperature, quantum correlation can take on some interesting results, such as the frozen and double sudden transition as well as the “revival” phenomenon, etc. Meanwhile, the remarkable similarities and differences among these correlation measures are also analyzed in detail and some significant results are presented. Our results provide some important information for the application of quantum correlation in hybrid qubit–qutrit systems in quantum information. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Dynamics of quantum correlation for a qubit–qutrit system in the presence of the dephasing environments

Loading next page...
 
/lp/springer_journal/dynamics-of-quantum-correlation-for-a-qubit-qutrit-system-in-the-Ptx0MUyWKW
Publisher
Springer US
Copyright
Copyright © 2016 by Springer Science+Business Media New York
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-016-1319-7
Publisher site
See Article on Publisher Site

Abstract

We analytically study the dynamic behaviors of quantum correlation measured by three kinds of measures including quantum discord (QD), geometric quantum discord (GQD) and one-norm GQD for a qubit–qutrit system under the influence of dephasing environments with Ohmic-like spectral densities at nonzero temperature. It is shown that the similar evolution behaviors may be obtained for sub-Ohmic and Ohmic reservoirs. By properly choosing the system’s initial states and reservoir temperature, quantum correlation can take on some interesting results, such as the frozen and double sudden transition as well as the “revival” phenomenon, etc. Meanwhile, the remarkable similarities and differences among these correlation measures are also analyzed in detail and some significant results are presented. Our results provide some important information for the application of quantum correlation in hybrid qubit–qutrit systems in quantum information.

Journal

Quantum Information ProcessingSpringer Journals

Published: Apr 25, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off