Dynamics of Photosynthesis in Pine Stands

Dynamics of Photosynthesis in Pine Stands The CO2 exchange of pine (Pinus sylvestris L.) shoots was continuously monitored over several years. The spatial and temporal variability of gas exchange was thoroughly investigated for three forest types. The net uptake of CO2 by current-season shoots in a bilberry pine stand equaled 5.4 g CO2 per g dry wt for the growing season. The net CO2 assimilation by one-year-old shoots over a growing season constituted 9.9 and 2.4 g CO2/(g dry wt year) in the upper and lower crown parts, respectively. The nighttime respiration of the current-season shoots released 0.7 g CO2/(g dry wt year), and the respiration of one-year-old shoots in the upper and lower parts of the canopy released 0.45 and 0.36 g CO2/(g dry wt year), respectively. Recalculation of three-year data per entire crown yielded an annual average carbon assimilation of 1.54 g C/(g dry wt year). Water relations markedly affected CO2 fixation. Nevertheless, the daily average values of photosynthesis in the summer were similar for pine stands with bilberry, heather, and dwarf shrub–polytric as understory dominants. It is shown that the realization of changes in photosynthetic function is related in time to growth processes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Dynamics of Photosynthesis in Pine Stands

Loading next page...
 
/lp/springer_journal/dynamics-of-photosynthesis-in-pine-stands-OEPvGebAGC
Publisher
Kluwer Academic Publishers-Plenum Publishers
Copyright
Copyright © 2003 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1023/A:1021948820778
Publisher site
See Article on Publisher Site

Abstract

The CO2 exchange of pine (Pinus sylvestris L.) shoots was continuously monitored over several years. The spatial and temporal variability of gas exchange was thoroughly investigated for three forest types. The net uptake of CO2 by current-season shoots in a bilberry pine stand equaled 5.4 g CO2 per g dry wt for the growing season. The net CO2 assimilation by one-year-old shoots over a growing season constituted 9.9 and 2.4 g CO2/(g dry wt year) in the upper and lower crown parts, respectively. The nighttime respiration of the current-season shoots released 0.7 g CO2/(g dry wt year), and the respiration of one-year-old shoots in the upper and lower parts of the canopy released 0.45 and 0.36 g CO2/(g dry wt year), respectively. Recalculation of three-year data per entire crown yielded an annual average carbon assimilation of 1.54 g C/(g dry wt year). Water relations markedly affected CO2 fixation. Nevertheless, the daily average values of photosynthesis in the summer were similar for pine stands with bilberry, heather, and dwarf shrub–polytric as understory dominants. It is shown that the realization of changes in photosynthetic function is related in time to growth processes.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Oct 17, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off