Dynamical behavior of atom–photon entanglement for a four-level atom near the band edge of a 3D-anisotropic photonic crystal

Dynamical behavior of atom–photon entanglement for a four-level atom near the band edge of a... Time evolution of the entanglement between a four-level atom near the band edge of a photonic crystal and its spontaneous emission field is investigated. It is shown that the quantum entropy has a faster oscillator behavior as the upper levels move further into the band gap. Entanglement oscillations can be controlled by the intensity and the detuning of the coupling field. An enhanced entanglement is achieved in the presence of quantum interference resulting from the two possible decay channels. In addition, the atom–photon entanglement will be influenced noticeably by the reservoir coupling constant, intensity of coupling field, and the detuning. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Dynamical behavior of atom–photon entanglement for a four-level atom near the band edge of a 3D-anisotropic photonic crystal

Loading next page...
 
/lp/springer_journal/dynamical-behavior-of-atom-photon-entanglement-for-a-four-level-atom-ZK0aRbyxvf
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-017-1590-2
Publisher site
See Article on Publisher Site

Abstract

Time evolution of the entanglement between a four-level atom near the band edge of a photonic crystal and its spontaneous emission field is investigated. It is shown that the quantum entropy has a faster oscillator behavior as the upper levels move further into the band gap. Entanglement oscillations can be controlled by the intensity and the detuning of the coupling field. An enhanced entanglement is achieved in the presence of quantum interference resulting from the two possible decay channels. In addition, the atom–photon entanglement will be influenced noticeably by the reservoir coupling constant, intensity of coupling field, and the detuning.

Journal

Quantum Information ProcessingSpringer Journals

Published: Apr 18, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off