Dynamic responses of asymmetric vortices over slender bodies to a rotating tip perturbation

Dynamic responses of asymmetric vortices over slender bodies to a rotating tip perturbation The dynamic responses of asymmetric vortices over a slender body to a rotating tip perturbation were investigated experimentally in a wind tunnel. A small rotating nose with an artificial micro-perturbation on the nose tip was driven by a servomotor with various rates to change azimuthal locations of tip perturbation. Wall pressures and spatial velocity fields were measured using pressure scanner and particle image velocimetry based on a phase-locked method. The results show that the spinning tip perturbation enables asymmetric vortices to exhibit significantly dynamic characteristics different from a case with a static perturbation. The orientations of asymmetric vortices and associated side forces show apparent phase delay that are enlarged with increasing rotational rates of the nose. The switching rates of asymmetric vortices among various orientations also increase with the rotational rates increasing, but asymmetry level of vortices is lowered, which reveals that the asymmetric vortices change requires an amount of time to switch from one orientation to another. The phase delays of vortices, however, are determined by the amount of time required for the propagation of disturbance waves along a body axis. As the rotational frequencies are sufficiently high, the orientations of vortices almost hold to be unchanged. The unchanged orientation of vortices is asymmetric, depending on the directions of rotation. The asymmetric vortices arising from high-frequency rotation of the nose are attributed to wall effects induced by the rotating nose with a finite length. In addition, there exist small intrinsic vortex oscillations which are superimposed on the average vortex structures with symmetric and asymmetric orientations for the cases of static and rotational tip perturbations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Dynamic responses of asymmetric vortices over slender bodies to a rotating tip perturbation

Loading next page...
 
/lp/springer_journal/dynamic-responses-of-asymmetric-vortices-over-slender-bodies-to-a-p8v0E0Ivlq
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2016 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-016-2139-3
Publisher site
See Article on Publisher Site

Abstract

The dynamic responses of asymmetric vortices over a slender body to a rotating tip perturbation were investigated experimentally in a wind tunnel. A small rotating nose with an artificial micro-perturbation on the nose tip was driven by a servomotor with various rates to change azimuthal locations of tip perturbation. Wall pressures and spatial velocity fields were measured using pressure scanner and particle image velocimetry based on a phase-locked method. The results show that the spinning tip perturbation enables asymmetric vortices to exhibit significantly dynamic characteristics different from a case with a static perturbation. The orientations of asymmetric vortices and associated side forces show apparent phase delay that are enlarged with increasing rotational rates of the nose. The switching rates of asymmetric vortices among various orientations also increase with the rotational rates increasing, but asymmetry level of vortices is lowered, which reveals that the asymmetric vortices change requires an amount of time to switch from one orientation to another. The phase delays of vortices, however, are determined by the amount of time required for the propagation of disturbance waves along a body axis. As the rotational frequencies are sufficiently high, the orientations of vortices almost hold to be unchanged. The unchanged orientation of vortices is asymmetric, depending on the directions of rotation. The asymmetric vortices arising from high-frequency rotation of the nose are attributed to wall effects induced by the rotating nose with a finite length. In addition, there exist small intrinsic vortex oscillations which are superimposed on the average vortex structures with symmetric and asymmetric orientations for the cases of static and rotational tip perturbations.

Journal

Experiments in FluidsSpringer Journals

Published: Mar 30, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off