Dynamic Prediction of Renal Failure Using Longitudinal Biomarkers in a Cohort Study of Chronic Kidney Disease

Dynamic Prediction of Renal Failure Using Longitudinal Biomarkers in a Cohort Study of Chronic... In longitudinal studies, prognostic biomarkers are often measured longitudinally. It is of both scientific and clinical interest to predict the risk of clinical events, such as disease progression or death, using these longitudinal biomarkers as well as other time-dependent and time-independent information about the patient. The prediction is dynamic in the sense that it can be made at any time during the follow-up, adapting to the changing at-risk population and incorporating the most recent longitudinal data. One approach is to build a joint model of longitudinal predictor variables and time to the clinical event, and draw predictions from the posterior distribution of the time to event conditional on longitudinal history. Another approach is to use the landmark model, which is a system of prediction models that evolve with the follow-up time. We review the pros and cons of the two approaches and present a general analytical framework using the landmark approach. The proposed framework allows the measurement times of longitudinal data to be irregularly spaced and differ between subjects. We propose a unified kernel weighting approach for estimating the model parameters, calculating the predicted probabilities, and evaluating the prediction accuracy through double time-dependent receiver operating characteristic curves. We illustrate the proposed analytical framework using the African American study of kidney disease and hypertension to develop a landmark model for dynamic prediction of end-stage renal diseases or death among patients with chronic kidney disease. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Statistics in Biosciences Springer Journals

Dynamic Prediction of Renal Failure Using Longitudinal Biomarkers in a Cohort Study of Chronic Kidney Disease

Loading next page...
 
/lp/springer_journal/dynamic-prediction-of-renal-failure-using-longitudinal-biomarkers-in-a-r0tT0yVIYY
Publisher
Springer US
Copyright
Copyright © 2016 by International Chinese Statistical Association
Subject
Statistics; Statistics for Life Sciences, Medicine, Health Sciences; Biostatistics; Theoretical Ecology/Statistics
ISSN
1867-1764
eISSN
1867-1772
D.O.I.
10.1007/s12561-016-9183-7
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial