Dynamic power allocation for a multiuser transmitter with hybrid energy sources

Dynamic power allocation for a multiuser transmitter with hybrid energy sources In this paper, we investigate the problem of dynamic power allocation for a multiuser transmitter supplied by hybrid energy sources in details. Specifically, we focus on the hybrid energy sources which include both the traditional power grid and various renewable sources whereby there are a few issues in considerations: (1) The energy harvested jointly from various renewable sources is time-varying and possibly unpredictable and is stored in a limited capacity buffer with battery leakage. (2) At the meantime, the data arrives randomly to the transmitter and queues according to the individual receivers to wait to be transmitted. (3) In addition, the wireless channels fluctuate randomly due to fading. Taking into account the time variant and dynamic features of this system, we develop a dynamic power allocation algorithm for the transmitter with the aim of minimizing the average amount of energy consumption from the power grid over an infinite horizon, subject to all data in queues cannot exceed a given deadline of receivers. The research question is formulated as a stochastic optimization problem, then we utilize Lyapunov optimization to exploit an online algorithm with low complexity, and it does not require prior statistical knowledge of the stochastic processes. Performance analysis of the proposed algorithm is carried out in theory, which shows that the proposed algorithm performs arbitrarily close to the optimal objective value; meanwhile, the algorithm ensures that the maximum delay of all data queues cannot exceed a given value. Finally, performance comparison shows that our proposed algorithm provides not only better performance but also less time delay than other two algorithms. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png EURASIP Journal on Wireless Communications and Networking Springer Journals

Dynamic power allocation for a multiuser transmitter with hybrid energy sources

Loading next page...
 
/lp/springer_journal/dynamic-power-allocation-for-a-multiuser-transmitter-with-hybrid-S6l7KCTyKY
Publisher
Springer International Publishing
Copyright
Copyright © 2017 by The Author(s).
Subject
Engineering; Signal,Image and Speech Processing; Communications Engineering, Networks; Information Systems Applications (incl.Internet)
eISSN
1687-1499
D.O.I.
10.1186/s13638-017-0971-7
Publisher site
See Article on Publisher Site

Abstract

In this paper, we investigate the problem of dynamic power allocation for a multiuser transmitter supplied by hybrid energy sources in details. Specifically, we focus on the hybrid energy sources which include both the traditional power grid and various renewable sources whereby there are a few issues in considerations: (1) The energy harvested jointly from various renewable sources is time-varying and possibly unpredictable and is stored in a limited capacity buffer with battery leakage. (2) At the meantime, the data arrives randomly to the transmitter and queues according to the individual receivers to wait to be transmitted. (3) In addition, the wireless channels fluctuate randomly due to fading. Taking into account the time variant and dynamic features of this system, we develop a dynamic power allocation algorithm for the transmitter with the aim of minimizing the average amount of energy consumption from the power grid over an infinite horizon, subject to all data in queues cannot exceed a given deadline of receivers. The research question is formulated as a stochastic optimization problem, then we utilize Lyapunov optimization to exploit an online algorithm with low complexity, and it does not require prior statistical knowledge of the stochastic processes. Performance analysis of the proposed algorithm is carried out in theory, which shows that the proposed algorithm performs arbitrarily close to the optimal objective value; meanwhile, the algorithm ensures that the maximum delay of all data queues cannot exceed a given value. Finally, performance comparison shows that our proposed algorithm provides not only better performance but also less time delay than other two algorithms.

Journal

EURASIP Journal on Wireless Communications and NetworkingSpringer Journals

Published: Dec 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off