Dynamic power allocation for a multiuser transmitter with hybrid energy sources

Dynamic power allocation for a multiuser transmitter with hybrid energy sources In this paper, we investigate the problem of dynamic power allocation for a multiuser transmitter supplied by hybrid energy sources in details. Specifically, we focus on the hybrid energy sources which include both the traditional power grid and various renewable sources whereby there are a few issues in considerations: (1) The energy harvested jointly from various renewable sources is time-varying and possibly unpredictable and is stored in a limited capacity buffer with battery leakage. (2) At the meantime, the data arrives randomly to the transmitter and queues according to the individual receivers to wait to be transmitted. (3) In addition, the wireless channels fluctuate randomly due to fading. Taking into account the time variant and dynamic features of this system, we develop a dynamic power allocation algorithm for the transmitter with the aim of minimizing the average amount of energy consumption from the power grid over an infinite horizon, subject to all data in queues cannot exceed a given deadline of receivers. The research question is formulated as a stochastic optimization problem, then we utilize Lyapunov optimization to exploit an online algorithm with low complexity, and it does not require prior statistical knowledge of the stochastic processes. Performance analysis of the proposed algorithm is carried out in theory, which shows that the proposed algorithm performs arbitrarily close to the optimal objective value; meanwhile, the algorithm ensures that the maximum delay of all data queues cannot exceed a given value. Finally, performance comparison shows that our proposed algorithm provides not only better performance but also less time delay than other two algorithms. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png EURASIP Journal on Wireless Communications and Networking Springer Journals

Dynamic power allocation for a multiuser transmitter with hybrid energy sources

Loading next page...
Springer International Publishing
Copyright © 2017 by The Author(s).
Engineering; Signal,Image and Speech Processing; Communications Engineering, Networks; Information Systems Applications (incl.Internet)
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial